首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
CFAR data fusion center with inhomogeneous receivers   总被引:1,自引:0,他引:1  
Detection systems with distributed sensors and data fusion are increasingly used by surveillance systems. A system formed by N inhomogeneous constant false alarm rate (CFAR) detectors (cell-averaging (CA) and ordered statistic (OS) CFAR detectors) is studied. A recursive formulation of an algorithm that permits a fixed level of false alarms in the data fusion center is presented, to set the optimum individual threshold levels in the CFAR receivers and the optimum `K out of N' decision rule in order to maximize the total probability of detection. The algorithm also considers receivers of different quality or with different communication channel qualities connecting them with the fusion center. This procedure has been applied to several hypothetical networks with distributed CA-CFAR and OS-CFAR receivers and for Rayleigh targets and interference, and it was seen that in general the fusion decision OR rule is not always the best  相似文献   

2.
A new constant false alarm rate (CFAR) test termed signal-plus-order statistic CFAR (S+OS) using distributed sensors is developed. The sensor modeling assumes that the returns of the test cells of different sensors are all independent and identically distributed In the S+OS scheme, each sensor transmits its test sample and a designated order statistic of its surrounding observations to the fusion center. At the fusion center, the sum of the samples of the test cells is compared with a constant multiplied by a function of the order statistics. For a two-sensor network, the functions considered are the minimum of the order statistics (mOS) and the maximum of the order statistics (MOS). For detecting a Rayleigh fluctuating target in Gaussian noise, closed-form expressions for the false alarm and detection probabilities are obtained. The numerical results indicate that the performance of the MOS detector is very close to that of a centralized OS-CFAR and it performs considerably better than the OS-CFAR detector with the AND or the OR fusion rule. Extension to an N-sensor network is also considered, and general equations for the false alarm probabilities under homogeneous and nonhomogeneous background noise are presented.  相似文献   

3.
The performance of distributed constant false alarm rate (CFAR) detection with data fusion both in homogeneous and nonhomogeneous Gaussian backgrounds is analyzed. The ordered statistics (OS) CFAR detectors are employed as local detectors. With a Swerling type I target model, in the homogeneous background, the global probability of detection for a given fixed global probability of false alarm is maximized by optimizing both the threshold multipliers and the order numbers of the local OS-CFAR detectors. In the nonhomogeneous background with multiple targets or clutter edges, the performance of the detection system is analyzed and its performance is compared with the performance of the distributed cell-averaging (CA) CFAR detection system  相似文献   

4.
Optimal distributed decision fusion   总被引:2,自引:0,他引:2  
The problem of decision fusion in distributed sensor systems is considered. Distributed sensors pass their decisions about the same hypothesis to a fusion center that combines them into a final decision. Assuming that the sensor decisions are independent of each other for each hypothesis, the authors provide a general proof that the optimal decision scheme that maximizes the probability of detection at the fusion for fixed false alarm probability consists of a Neyman-Pearson test (or a randomized N-P test) at the fusion and likelihood-ratio tests at the sensors  相似文献   

5.
The authors develop the theory of CA-CFAR (cell-averaging constant false-alarm rate) detection using multiple sensors and data fusion, where detection decisions are transmitted from each CA-CFAR detector to the data fusion center. The overall decision is obtained at the data fusion center based on some k out of n fusion rule. For a Swerling target model I embedded in white Gaussian noise of unknown level, the authors obtain the optimum threshold multipliers of the individual detectors. At the data fusion center, they derive an expression for the overall probability of detection while the overall probability of false alarm is maintained at the desired value for the given fusion rules. An example is presented showing numerical results  相似文献   

6.
Time diversity transmission is often used to circumvent the high probability of a deep fade on a single transmission which may result in loss of the signal. One way to combat deep fades is to postdetection integrate the received observations from each range resolution cell. The false alarm rate of the postdetection integrator (PI) is extremely sensitive to randomly arriving impulse interference. Such interfering pulses may be unintentionally generated by nearby radars or intentionally generated by pulse jammers seeking to destroy the visibility of the radar. The binary integrator (PI) which uses an M-out-of-L decision rule is insensitive to at most M-1 interfering pulses. We consider the adaptive implementation of the PI and BI detectors for constant false alarm rate (CFAR) operation. We show that the CFAR BI detector when the “AND” (L-out-of-L) decision rule is used exhibits more robust false alarm control properties in the presence of impulse interference at the expense of severe detection loss when no interference is present. The CFAR adaptive PI (API) detector is proposed to alleviate this problem. The CFAR API detector implements an adaptive censoring algorithm which determines and censors with high probability the interference samples thereby achieving robust false alarm control in the presence of interference and optimum detection performance in the absence of interference  相似文献   

7.
In this paper, we investigate data quantization effects in constant false alarm rate (CFAR) signal detection. Exponential distribution for the input data and uniform quantization are assumed for the CFAR detector analysis. Such assumptions are valid in the case of radar for a Swerling I target in Gaussian clutter plus noise and a receiver with analog square-law detection followed by analog-to-digital (A/D) conversion. False alarm and detection probabilities of the cell averaging (CA) and order statistic (OS) CFAR detectors operating on quantized observations are analytically determined. In homogeneous backgrounds with 15 dB clutter power fluctuations, we show analytically that a 12-bit uniform quantizer is sufficient to achieve false alarm rate invariance. Detector performance characteristics in nonhomogeneous backgrounds, due to regions of clutter power transitions and multiple interfering targets, are also presented and detailed comparisons are given  相似文献   

8.
The greatest of constant false alarm rate processor (GO CFAR) is a useful architecture for adaptively setting a radar detection threshold in the presence of clutter edges. The GO CFAR input is often the envelope detected in-phase (I) and quadrature (Q) channels of the baseband signal (xe=√(I2+Q2)). This envelope detection can also be approximated using x=a max{|I|,|Q|}+b min{|I|,|Q|} which requires less complex hardware (a and b are simple multiplying coefficients). The envelope GO CFAR processor and several envelope approximation GO CFAR processors are compared in terms of the probability of false alarm (PFA) performance. Closed-form expressions which describe the PFA performance are given and their accuracy evaluated. It is shown that for all cases, the PFA is proportional to the number of reference cells n for small threshold multiplier T and inversely proportional to n for large T. A region of intersection occurs where the PFA is the same for two different values of n. For example, at T'=1.68 in the |I|+|Q| GO CFAR (a=1, b=1) the PFA for n=1 is equal to the optimal n=∞ fixed-threshold PFA (PFA=0.112)  相似文献   

9.
A CFAR Design for a Window Spanning Two Clutter Fields   总被引:1,自引:0,他引:1  
When the heterogeneous clutter field spanning the spatial sampling sliding window can be modeled as two contiguous homogeneous clutter fields with the statistical parameters of each field unknown and independent from field to field and with the transition point between fields also not known, then the cell-averaging constant false alarm rate (CFAR) performance significantly degrades, yielding target masking effects and loss of false alarm regulation. For the same defined and encountered environment spanning the sliding window, the performance degradation effects are shown to be largely eliminated when a newly developed class of CFAR tests is employed. These tests are designated as heterogeneous clutter estimating CFARs (HCE-CFAR). The test initially involves the combined use of multiple hypothesis testing and maximum likelihood estimation procedures to estimate the statistical parameters of each of the two fields, and the transition point between them, and then makes use of the relevant estimated clutter field parameters to effect the final decision rule. HCE-CFAR designs are presented for both the cases when the contiguous fields have Rayleigh first-order probability distributions, and log-normal probability distribution. However, the focus of the development and the conducted performance evaluation is for the Rayleigh clutter cases.  相似文献   

10.
针对统计MIMO雷达各观测通道统计特性不一致的情况,提出了一种多通道融合检测技术。该技术利用均匀性判定规则,选择一组均匀的、"被认为是具有较高信杂噪比"的局部检验统计量来构建全局检验统计量,即新的检测器。给出了新检测器的设计步骤和均匀性判定规则,并利用全概率公式证明了新检测器的虚警概率与每一操作步骤中过门限概率的关系,从而为仿真得出检测门限提供了理论基础。仿真结果表明,在不同通道间信噪比分布类型条件下,新检测器的检测性能具有较强的稳健性,且与不同条件下性能最优的检测器相比,其性能损失很小。  相似文献   

11.
A distributed detection system is considered that consists of a number of independent local detectors and a fusion center. The decision statistics and performance characteristics (i.e. the false alarm probabilities and detection probabilities) of the local detectors are assumed as given. Communication is assumed only between each local detector and the fusion center and is one-way from the former to the latter. The fusion center receives decisions from the local detectors and combines them for a global decision. Instead of a one-bit hard decision, the authors propose that each local detector provides the fusion center with multiple-bit decision value which represents its decision and, conceptually, its degree of confidence on that decision. Generating a multiple-bit local decision entails a subpartitioning of the local decision space the optimization of which is studied. It is shown that the proposed system significantly outperforms one in which each local detector provides only a hard decision. Based on optimum subpartitioning of local decision space, the detection performance is shown to increase monotonically with the number of partitions  相似文献   

12.
Aiming at parallel distributed constant false alarm rate (CFAR) detection employing K/N fusion rule, an optimization algorithm based on the genetic algorithm with interval encoding is proposed. N-1 local probabilities of false alarm are selected as optimization variables. And the encoding intervals for local false alarm probabilities are sequentially designed by the person-by-person optimization technique according to the constraints. By turning constrained optimization to unconstrained optimization, the problem of increasing iteration times due to the punishment technique frequently adopted in the genetic algorithm is thus overcome. Then this optimization scheme is applied to spacebased synthetic aperture radar (SAR) multi-angle collaborative detection, in which the nominal factor for each local detector is determined. The scheme is verified with simulations of cases including two, three and four independent SAR systems. Besides, detection performances with varying K and N are compared and analyzed.  相似文献   

13.
A distributed radar detection system that employs binary integration at each local detector is studied. Local decisions are transmitted to the fusion center where they are combined to yield a global decision. The optimum values of the two thresholds at each local processor are determined so as to maximize the detection probability under a given probability of false alarm constraint. Using an important channel model, performance comparisons are made to determine the integration loss  相似文献   

14.
Binary parallel distributed-detection architectures employ a bank of local detectors to observe a common volume of surveillance, and form binary local decisions about the existence or nonexistence of a target in that volume. The local decisions are transmitted to a central detector, the data fusion center (DEC), which integrates them to a global target or no target decision. Most studies of distributed-detection systems assume that the local detectors are synchronized. In practice local decisions are made asynchronously and the DFC has to update its global decision continually. In this study the number of local decisions observed by the central detector within any observation period is Poisson distributed. An optimal fusion rule is developed and the sufficient statistic is shown to be a weighted sum of the local decisions collected by the DFC within the observation interval. The weights are functions of the individual local detector performance probabilities (i.e., probabilities of false alarm and detection). In this respect the decision rule is similar to the one developed by Chair and Varshney for the synchronized system. Unlike the Chair-Varshney rule, however, the DFC's decision threshold in the asynchronous system is time varying. Exact expressions and asymptotic approximations are developed for the detection performance with the optimal rule. These expressions allow performance prediction and assessment of tradeoffs in realistic decision fusion architectures which operate over modern communication networks  相似文献   

15.
The problem of distributed detection involving N sensors is considered. The configuration of sensors is serial in the sense that the Jth sensor decides using the decision it receives along with its own observation. When each sensor uses the Neyman-Pearson test, the probability of detection is maximized for a given probability of false alarm, at the Nth stage. With two sensors, the serial scheme has a performance better than or equal to the parallel fusion scheme analyzed in the literature. Numerical examples illustrate the global optimization by the selection of operating thresholds at the sensors  相似文献   

16.
An analysis of the probability of target detection for a clutter map CFAR using digital exponential filtering has been performed. General performance equations are derived. The probability of detection versus signal-to-noise ratio is plotted for a false alarm probability of 1.E-06 for several weight values. The CFAR loss is plotted for a detection probability of 0.9 and false alarm probabilities of 1.E-06 and 1.E-08.  相似文献   

17.
An optimal data fusion rule is derived for an m-ary detection problem. Each detector determines a local decision using a local decision rule and transmits the local decision to the fusion center. Considering the reliability of local detectors, local decisions are combined to produce the final decision. In this study, based upon the maximum posterior probability concept, optimal decision rules for m-ary detection problems are proposed for the local detector and the data fusion center  相似文献   

18.
It is necessary for automatic detection radars to be adaptive to variations in background clutter in order to maintain a constant false alarm rate (CFAR). A CFAR based on an ordered statistic technique (OS CFAR) has some advantages over the cell-averaging technique (CA CFAR), especially in clutter edges or multiple target environments; unfortunately the large processing time required by this technique limits its use. The authors present two new OS CFARs that require only ahlf the processing time. One is an ordered statistic greatest of CFAR (OSGO), while the other is an ordered statistic smallest of CFAR (OSSO). The OSGO CFAR has the advantages of the OS CFAR with only a negligible increment to the CFAR loss  相似文献   

19.
提出了一种限定虚警概率的PN码捕获的自适应门限估计算法,首先在对判决变量的统计特性分析的基础上,计算出了判决门限的有偏估计量;然后分析了估计偏差对捕获系统检测概率和虚警概率的影响;最后,计算机仿真表明,在限定虚警概率的前提下,捕获系统在高斯白噪声信道和瑞利衰落信道下具有较高的检测概率,自适应门限的估计方法易于实现,且适合工程应用。  相似文献   

20.
Analysis of CFAR processors in homogeneous background   总被引:1,自引:0,他引:1  
Five different constant false alarm rate (CFAR) radar processing schemes are considered and their performances analyzed in homogeneous and nonhomogeneous backgrounds, the latter specifically being the multiple target environment and regions of clutter transitions. The average detection threshold for each of the CFAR schemes was computed to measure and compare the detection performance in homogeneous noise background. The exponential noise model was used for clear and clutter backgrounds to get closed-form expressions. The processor types compared are: the cell-averaging CFAR, the `greatest of' CFAR, the `smallest of' CFAR, the ordered-statistics CFAR, and a modified ordered-statistics processor called the trimmed-mean CFAR  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号