首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
航天技术   1篇
航天   23篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  1995年   1篇
排序方式: 共有24条查询结果,搜索用时 31 毫秒
1.
Babkin  E. V.  Belyaev  M. Yu.  Efimov  N. I.  Sazonov  V. V.  Stazhkov  V. M. 《Cosmic Research》2004,42(2):155-164
A comparison of two methods of determination of the microacceleration quasisteady component arising onboard the International Space Station was performed. In the first method the acceleration was calculated using the relative motion of the station reconstructed on the basis of telemetry data. The second method was a direct measurement of the microacceleration by a low-frequency accelerometer and a smoothing of the data obtained. The used measurements were made by the American accelerometer MAMS. The above comparison can theoretically be used to refine the position of the station center of mass relative to its body.  相似文献   
2.
The paper has studied the accuracy of the technique that allows the rotational motion of the Earth artificial satellites (AES) to be reconstructed based on the data of onboard measurements of angular velocity vectors and the strength of the Earth magnetic field (EMF). The technique is based on kinematic equations of the rotational motion of a rigid body. Both types of measurement data collected over some time interval have been processed jointly. The angular velocity measurements have been approximated using convenient formulas, which are substituted into the kinematic differential equations for the quaternion that specifies the transition from the body-fixed coordinate system of a satellite to the inertial coordinate system. Thus obtained equations represent a kinematic model of the rotational motion of a satellite. The solution of these equations, which approximate real motion, has been found by the least-square method from the condition of best fitting between the data of measurements of the EMF strength vector and its calculated values. The accuracy of the technique has been estimated by processing the data obtained from the board of the service module of the International Space Station (ISS). The reconstruction of station motion using the aforementioned technique has been compared with the telemetry data on the actual motion of the station. The technique has allowed us to reconstruct the station motion in the orbital orientation mode with a maximum error less than 0.6° and the turns with a maximal error of less than 1.2°.  相似文献   
3.
The results of investigating free oscillations of the International Space Station construction appearing during spacecraft docking and undocking are described. The study is carried out using the measurement data of the low-frequency MAMS accelerometer. Several intervals of measurements performed in 2005 and 2006 were chosen to be studied. For chosen intervals, only the data intervals corresponding to the process of free attenuation of the oscillations construction elements were analyzed. Characteristic frequencies of elastic oscillations of the station construction and attenuation coefficients corresponding to them are found. The comparative analysis of the results obtained for various docking ports (nodes) is carried out. The described study is performed as a part of the technical experiment “The ISS Environment” carried out onboard the station in accordance with the Russian program of scientific and engineering experiments.  相似文献   
4.
The results of a preliminary analysis of microperturbations on the International Space Station during physical exercises of the crew are presented. The goal of this paper is to identify the parameters of perturbations when physical exercises are performed. The results of measurements by sensors of microaccelerations of both Russian and American segments during physical exercises in the service module of the Russian segment are analyzed.  相似文献   
5.
We have reconstructed the uncontrolled rotational motion of the Progress M-29M transport cargo spacecraft in the single-axis solar orientation mode (the so-called sunward spin) and in the mode of the gravitational orientation of a rotating satellite. The modes were implemented on April 3–7, 2016 as a part of preparation for experiments with the DAKON convection sensor onboard the Progress spacecraft. The reconstruction was performed by integral statistical techniques using the measurements of the spacecraft’s angular velocity and electric current from its solar arrays. The measurement data obtained in a certain time interval have been jointly processed using the least-squares method by integrating the equations of the spacecraft’s motion relative to the center of mass. As a result of processing, the initial conditions of motion and parameters of the mathematical model have been estimated. The motion in the sunward spin mode is the rotation of the spacecraft with an angular velocity of 2.2 deg/s about the normal to the plane of solar arrays; the normal is oriented toward the Sun or forms a small angle with this direction. The duration of the mode is several orbit passes. The reconstruction has been performed over time intervals of up to 1 h. As a result, the actual rotational motion of the spacecraft relative to the Earth–Sun direction was obtained. In the gravitational orientation mode, the spacecraft was rotated about its longitudinal axis with an angular velocity of 0.1–0.2 deg/s; the longitudinal axis executed small oscillated relative to the local vertical. The reconstruction of motion relative to the orbital coordinate system was performed in time intervals of up to 7 h using only the angularvelocity measurements. The measurements of the electric current from solar arrays were used for verification.  相似文献   
6.
Russian Progress transport cargo vehicles have successfully been used in different space station programs since 1978. At present time, they play an important role in the International Space Station (ISS) project. Main tasks performed by the transport cargo vehicle (TCV) in the station program are the following: refueling of the station, delivery of consumables and equipment, waste removal, station attitude control and orbit correction maneuver execution.  相似文献   
7.
The results of determining the rotational motion of the Mir orbital station are presented for four long segments of its unmanned uncontrolled flight in 1999–2000. The determination was carried out using the data of onboard measurements of the Earth's magnetic field intensity. These data, taken for a time interval of several hours, were jointly processed by the least squares method with the help of integration of the equations of station motion relative to its center of mass. As a result of this processing, the initial conditions of motion and the parameters of the mathematical model used were evaluated. The technique of processing is verified using the telemetry data on angular velocity of the station and its attitude parameters. Two types of motion were applied on the investigated segments. One of them (three segments) presents a rotation around the axis of the minimum moment of inertia. This axis executes small oscillations with respect to a normal to the orbit plane. Such a motion was used for the first time on domestic manned orbital complexes. The second type of motion begins with a biaxial rotation which, in a few weeks, goes over into a motion very similar to the rotation around the normal to the orbit plane, but around the axis of the maximum moment of inertia.  相似文献   
8.
Results of in-flight tests of three modes of uncontrolled attitude motion of the Progress spacecraft are described. These proposed modes of experiments related to microgravity are as follows: (1) triaxial gravitational orientation, (2) gravitational orientation of the rotating satellite, and (3) spin-up in the plane of the orbit around the axis of the maximum moment of inertia. The tests were carried out from May 24 to June 1, 2004 onboard the spacecraft Progress M1-11. The actual motion of this spacecraft with respect to its center of mass, in the above-mentioned modes, was determined by telemetric information about an electric current tapped off from solar batteries. The values of the current obtained during a time interval of several hours were processed jointly using the least squares method by integration of the equations of the spacecraft’s attitude motion. The processing resulted in estimation of the initial conditions of motion and of the parameters of mathematical models used. For the obtained motions the quasi-static component of microaccelerations was computed at a point onboard, where installation of experimental equipment is possible.  相似文献   
9.
Cosmic Research - The results of the Sreda–MKS space experiment showed that visual data on the vibrations of the ISS structural elements allow one to acquire quantitative characteristics of...  相似文献   
10.
The results of experiments with the DAKON-M convection sensor onboard the Russian orbital segment of the International Space Station are described. A comparison of the sensor measurements with the results of calculation of the quasistatic microacceleration component at the point of installation is made. For this comparison we have used three measurement intervals of the experiments in 2009, during which spacecraft were docked with the station, undocked from it, and actuation of jet engines of the attitude control system took place. When calculating microacceleration, we use the measurement data of the low-frequency MAMS accelerometer, installed on the American segment, and the telemetry data on the ISS rotational motion. This information allowed one to convert the MAMS measurements to the point of installation of the DAKON-M convection sensor. A comparison of sensor measurements with calculated microaccelerations showed sufficiently accurate coincidence between the calculated and measured data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号