首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 381 毫秒
1.
A space experiment aimed at determination of quasi-static microaccelerations onboard an artificial satellite of the Earth using video images of the objects executing free motion is considered. The experiment was carried out onboard the Foton M-3 satellite. Several pellets moved in a cubic box fixed on the satellite’s mainframe and having two transparent adjacent walls. Their motion was photographed by a digital video camera. The camera was installed facing one of the transparent walls; a mirror was placed at an angle to another transparent wall. Such an optical system allowed us to have in a single frame two images of the pellets from differing viewpoints. The motion of the pellets was photographed on time intervals lasting 96 s. Pauses between these intervals were also equal to 96 s. A special processing of a separate image allowed us to determine coordinates of the pellet centers in the camera’s coordinate system. The sequence of frames belonging to a continuous interval of photography was processed in the following way. The time dependence of each coordinate of every pellet was approximated by a second degree polynomial using the least squares method. The coefficient of squared time is equal to a half of the corresponding microacceleration component. As has been shown by processing made, the described method of determination of quasi-static microaccelerations turned out to be sufficiently sensitive and accurate.  相似文献   

2.
The results of studying vibration microaccelerations aboard the International Space Station are presented. The study was performed using the measurement data of the MAMS low-frequency and the SAMS high-frequency accelerometers. For the study, six intervals of measurements were selected, performed in 2005. During these intervals the station was flying in the standard orbital orientation, attitude control engines were not switched on, and the crew rested. Discrete and continuous spectra were analyzed on selected intervals. The most significant disturbances with the discrete spectrum (cyclic trends) have been found. Using the second order autoregression model, parameters of the most significant disturbances with the continuous spectrum were determined. This study was carried out as a part of the technical experiment “The ISS environment”.  相似文献   

3.
A comparison of the measurement data of radiation conditions onboard the ISS during solar proton events in October 2003 and onboard the Mir orbital station in October 1989 is carried out. It is shown that there is a difference in the conditions of particle penetration to the station orbits during these series of flares. Computational estimates of the absorbed doses are obtained, and they agree well with the data of measurements by standard instruments of radiation monitoring. The comparisons made demonstrate that the equivalent thickness of the shield at the location of the R-16 radiometer onboard the ISS exceeds the corresponding value onboard the Mir station by a factor of 2.8.Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 663–667.Original Russian Text Copyright © 2004 by Bondarenko, Mitrikas, Tsetlin.  相似文献   

4.
Babkin  E. V.  Belyaev  M. Yu.  Efimov  N. I.  Sazonov  V. V.  Stazhkov  V. M. 《Cosmic Research》2003,41(3):264-273
The results of determination of the uncontrolled attitude motion of the orbital station MIR on four prolonged segments of its unmanned flight in 2000 and 2001 are presented. The determination was carried out on the basis of the data of onboard measurements of the Earth's magnetic field. The data obtained on a time interval of several hours were processed jointly by the least squares method by integration of the equations of motion of the station with respect to its center of mass. The processing resulted in the estimation of the initial conditions of the motion and of the parameters of the mathematical model used. Several types of regular motion were observed on sufficiently prolonged time intervals on the studied segments. Some of these motions were planned; others were established spontaneously.  相似文献   

5.
We describe the results of determining the mass of the International Space Station using the data of MAMS accelerometer taken during correction of the station orbit on August 20, 2004. The correction was made by approach and attitude control engines (ACE) of the Progress transporting spacecraft. The engines were preliminary calibrated in an autonomous flight using the onboard device for measuring apparent velocity increment. The method of calibration is described and its results are presented. The error in station mass determination is about 1%. The same data of MAMS and similar data obtained during the orbit correction on August 26, 2004 were used for the analysis of high-frequency vibrations of the station mainframe caused by operation of the ACE of Progress. Natural frequencies of the ACE are determined. They lie in the frequency band 0.024–0.11 Hz. ACE operation is demonstrated to result in a substantial increase of microaccelerations onboard the station in the frequency range 0–1 Hz. The frequencies are indicated at which disturbances increase by more than an order of magnitude. The study described was carried out as a part of the Tensor technological experiment.  相似文献   

6.
A mathematical model of the operation of the sensor of convection under ground and space conditions is described, and the results of modeling are compared to experimental data. A good agreement of the model and experiment is obtained for ground conditions. The sensor operation under conditions of a space flight is simulated using actual microaccelerations that took place onboard the Mirstation. Good sensitivity of the sensor to the measured components of acceleration is demonstrated. The results of simulation are compared to the results of space experiments carried out with the DACON instrument onboard the Mirstation.  相似文献   

7.
The results of determining the rotational motion of the Mir orbital station are presented for four long segments of its unmanned uncontrolled flight in 1999–2000. The determination was carried out using the data of onboard measurements of the Earth's magnetic field intensity. These data, taken for a time interval of several hours, were jointly processed by the least squares method with the help of integration of the equations of station motion relative to its center of mass. As a result of this processing, the initial conditions of motion and the parameters of the mathematical model used were evaluated. The technique of processing is verified using the telemetry data on angular velocity of the station and its attitude parameters. Two types of motion were applied on the investigated segments. One of them (three segments) presents a rotation around the axis of the minimum moment of inertia. This axis executes small oscillations with respect to a normal to the orbit plane. Such a motion was used for the first time on domestic manned orbital complexes. The second type of motion begins with a biaxial rotation which, in a few weeks, goes over into a motion very similar to the rotation around the normal to the orbit plane, but around the axis of the maximum moment of inertia.  相似文献   

8.
We describe the method and results of determination of the inertia tensor of the International Space Station using telemetry data related to its attitude motion and the total angular momentum of gyrodines. A linear system of differential equations describing the variation of the total angular momentum of gyrodines on some time interval is derived on the basis of the data related to the station orientation in the same time interval. This linear system represents the theorem related to the variation of the total angular momentum of the station and gyrodines and takes into account the action of gravitational and aerodynamic moments upon the station. The solution to the system depends linearly on the components of the inertia tensor of the station and on the parameters specifying the aerodynamic moment. The estimates of these quantities are carried out by the least squares method on the condition of the best approximation by the solutions to the considered linear system of the telemetry values of the total angular momentum of the gyrodines.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 2, 2005, pp. 135–146.Original Russian Text Copyright © 2005 by Banit, Belyaev, Dobrinskaya, Efimov, Sazonov, Stazhkov.  相似文献   

9.
The results of reconstruction of uncontrolled rotational motion of the Foton-12 satellite using the measurement data of onboard sensors are presented. This problem has already been solved successfully several years ago. The satellite motion was reconstructed using the data of measuring the Earth’s magnetic field. The data of measuring the angular velocity and microaccelerations by the QSAM system were actually not used for this purpose, since these data include a clearly seen additional component whose origin was at that time unclear. This component prevented one from using these data directly for reconstruction of the angular motion. Later it became clear that the additional component was caused by the Earth’s magnetic field. Discovery of this fact allowed us to make necessary corrections when processing the QSAM system data and to use them for reconstruction of rotational motion of Foton-12. Below, a modified method of processing the QSAM system data is described together with the results of its application. The main result is obtained by comparing the motion reconstructed from measurements of angular velocity or acceleration with that found by way of processing the measurements of the Earth’s magnetic field. Their coincidence turned out to be rather accurate.  相似文献   

10.
The results of reconstruction of uncontrolled attitude motion of the Foton M-2 satellite using measurements with the accelerometer TAS-3 are presented. The attitude motion of this satellite has been previously determined by the measurement data of the Earth’s magnetic field and the angular velocity. The TAS-3 data for this purpose are used for the first time. These data contain a well-pronounced additional component which made impossible their direct employment for the reconstruction of the attitude motion and whose origin was unknown several years ago. Later it has become known that the additional component is caused by the influence of the Earth’s magnetic field. The disclosure of this fact allowed us to take into account a necessary correction in processing of TAS-3 data and to use them for the reconstruction of the attitude motion of Foton M-2. Here, a modified method of processing TAS-3 data is described, as well as results of its testing and employing. The testing consisted in the direct comparison of the motion reconstructed by the new method with the motion constructed by the magnetic measurements. The new method allowed us to find the actual motion of Foton M-2 in the period June 9, 2005–June 14, 2005, when no magnetic measurements were carried out.  相似文献   

11.
In 2001–2003, the X-ray and microwave observations of ten solar flares of M- and X-classes were carried out by the CORONAS-F orbital station, the RSTN Sun service, and Nobeyama radio polarimeters. Based on these observations, a correlation analysis of time profiles of nonthermal radiation was performed. On average, hard X-ray radiation outstrips the microwave radiation in 9 events, i.e., time delays are positive. The appearance of negative delays is associated with effective scattering of accelerated electrons in pitch angles, where the length of the free path of a particle is less than the half-length of a flare loop. The additional indications are obtained in favor of the need to account for the effect of magnetic mirrors on the dynamics of energetic particles in the coronal arches.  相似文献   

12.
The results of reconstruction of rotational motion of the Foton M-3 satellite during its uncontrolled flight in September 2007 are presented. The reconstruction was performed by processing the data of onboard measurements of the Earth’s magnetic field obtained by the DIMAC instruments. The measurements were carried out continuously throughout the flight, but the processing technique dealt with the data portions covering time intervals of a few orbital revolutions. The data obtained on each such interval were processed jointly by the least squares method with using integration of the equations of satellite motion relative to its center of mass. When processing, the initial conditions of motion and the used mathematical model’s parameters were estimated. The results of processing 16 data sets gave us complete information about the satellite motion. This motion, which began at a low angular velocity, had gradually accelerated and in five days became close to the regular Euler precession of an axisymmetric solid body. At the end of uncontrolled flight the angular velocity of the satellite relative to its lengthwise axis was 0.5 deg/s; the angular velocity projection onto the plane perpendicular to this axis had a magnitude of about 0.18 deg/s.  相似文献   

13.
A number of scientific and technical experiments were carried out and are still being carried out onboard the Mirorbital station in various fields: physics of fluids, space materials study, astrophysics, biotechnology, and so on. The quality and reliability of space experiments are essentially dependent on a knowledge of real microgravitational situation onboard a satellite, which essentially depends on vibrational perturbations. A lot of vibration processes studies have been done up to now on the Mirstation in the following lines of research: control of dynamic and exploitation regimes when carrying out biotechnological and technological experiments; determination of the contribution of different onboard systems and mechanisms to the total vibration perturbations power; and investigation of distributions of microacceleration levels and dynamics of vibration processes in different modules and segments of the orbital station. This paper presents the results of the analysis of vibration perturbations produced by some standard onboard Mirstation systems in a configuration when the KVANT-2 and KRISTALL modules were arranged along the yaw axis of the mainframe. It is shown that due to strong requirements for tolerable levels of the microaccelerations onboard the International Space Station (ISS), the investigations of microgravitational situation, as an integral part of the technological environment, now have a high priority.  相似文献   

14.
Levtov  V. L.  Romanov  V. V.  Babkin  E. V.  Ivanov  A. I.  Stazhkov  V. M.  Sazonov  V. V. 《Cosmic Research》2004,42(2):165-177
The results of processing the data of measurements of microaccelerations, carried out onboard the Mir orbital station using the Russian VM-09 system of accelerometers, are described. The system was developed by the Composite Research-Production Association. The sensitivity of this system was 10–4 m/s2; its frequency band had limits from a few tenths of a hertz up to 100 Hz. The measurements were carried out in the real-time mode of data transmission to the Earth, when the orbital station flew over the telemetry data receiving point. The instrument's sampling rate was 200 measurements per second, and the length of a continuous run of measurements did not exceed 10 min. The following problems are considered in the paper: (1) isolation of cyclic trends from the measurement data; (2) estimation of spectral density of the data component with a continuous spectrum; and (3) low-frequency filtration of the measurement data  相似文献   

15.
The ground-based polarization jet measurements at the Yakutsk ionosphere station (L= 3.0) for the years 1989–1991 (110 events) are compared with variations of the AE-index and with parameters of the local magnetic activity. It is shown that polarization jet development in the near midnight sector can occur during a period of no longer than 10 min on the expansion phase of a substorm. The formation of the polarization jet is accompanied by a specific magnetic field variation corresponding in shape to a fast passage of the Harang Discontinuity above the station. Statistical data are given on ground level observations of the polarization jet, which are close to those measured from satellites. The mean delay (averaged over the full data bank) between the onset of a substorm with AE 500 nT and the moment of the polarization jet appearance at L= 3.0 is equal to 0.5 h near midnight and to 1.0 – 1.5 h in the evening sector. Estimations show that the duration of the polarization jet formation when energetic ions are injected into the Harang Discontinuity region above the ground station can last for about 10 min, and during this time the Harang Discontinuity can be shifted to the west. This is in qualitative agreement with the described observations.  相似文献   

16.
17.
The results of experiments with the DAKON-M convection sensor onboard the Russian orbital segment of the International Space Station are described. A comparison of the sensor measurements with the results of calculation of the quasistatic microacceleration component at the point of installation is made. For this comparison we have used three measurement intervals of the experiments in 2009, during which spacecraft were docked with the station, undocked from it, and actuation of jet engines of the attitude control system took place. When calculating microacceleration, we use the measurement data of the low-frequency MAMS accelerometer, installed on the American segment, and the telemetry data on the ISS rotational motion. This information allowed one to convert the MAMS measurements to the point of installation of the DAKON-M convection sensor. A comparison of sensor measurements with calculated microaccelerations showed sufficiently accurate coincidence between the calculated and measured data.  相似文献   

18.
The data of microacceleration measurements performed onboard the Mirstation are analyzed. The data were taken while testing the passive vibration-protective platform VZP-1K developed by the NPO Kompozit. We have processed the results of simultaneous microacceleration measurements on the vibration-protective platform and on the station body close to the platform. Two sets of the French equipment Microaccelerometer were used for these measurements. It was found that the platform reduces the vibrational component of microaccelerations in the band of frequencies above 3 Hz by more than a factor of 10. In this case, all harmonics with large amplitudes are damped by a factor of 50 and more, and some harmonics with small amplitude are damped only by a factor of 10. In the band 0.3–0.6 Hz (close to natural frequencies of the platform), the several-fold increase in amplitude of the vibrational component of microaccelerations is observed, but since the initial values of this amplitude in all performed experiments were small, the above indicated increase practically has not decreased the vibration-protective properties of the platform. The estimations of natural frequencies and damping coefficients of the platform found as a result of data processing of microacceleration measurements made during its free oscillations are obtained. The dependence of frequencies on the amplitude of oscillations is revealed for one mode, which testifies to appreciable nonlinear effects.  相似文献   

19.
The method and the results of investigating the low-frequency component of microaccelerations onboard the Foton-11satellite are presented. The investigation was based on the processing of data of the angular velocity measurements made by the German system QSAM, as well as the data of measurements of microaccelerations performed by the QSAM system and by the French accelerometer BETA. The processing was carried out in the following manner. A low-frequency (frequencies less than 0.01 Hz) component was selected from the data of measurements of each component of the angular velocity vector or of the microacceleration, and an approximation was constructed of the obtained vector function by a similar function that was calculated along the solutions to the differential equations of motion of the satellite with respect to its center of mass. The construction was carried out by the least squares method. The initial conditions of the satellite motion, its aerodynamic parameters, and constant biases in the measurement data were used as fitting parameters. The time intervals on which the approximation was constructed were from one to five hours long. The processing of the measurements performed with three different instruments produced sufficiently close results. It turned out to be that the rotational motion of the satellite during nearly the entire flight was close to the regular Eulerian precession of the axially symmetric rigid body. The angular velocity of the satellite with respect to its longitudinal axis was about 1 deg/s, while the projection of the angular velocity onto the plane perpendicular to this axis had an absolute value of about 0.2 deg/s. The magnitude of the quasistatic component of microaccelerations in the locations of the accelerometers QSAM and BETA did not exceed 5 × 10–5–10–4m/s2for the considered motion of the satellite.  相似文献   

20.
The results of reconstructing the uncontrolled rotational motion of the Aist small spacecraft prototype during its flight in early 2014 have been presented. The reconstruction was carried out by processing data from onboard measurements of the Earth’s magnetic field. The processing procedure used portions of data covering intervals of time with durations ranging from a few dozen minutes to three hours. Data obtained in each such interval were processed jointly by the least-squares method by integrating the equations of the satellite motion relative to the center of mass. The initial conditions of the motion and the parameters of the used mathematical model during processing have been estimated. The results of processing for several data intervals have provided a fairly complete picture of the satellite motion. This was the weakly disturbed Euler–Poinsot motion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号