首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
航空   4篇
航天技术   8篇
航天   3篇
  2018年   1篇
  2012年   2篇
  2009年   4篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1998年   1篇
  1985年   1篇
排序方式: 共有15条查询结果,搜索用时 609 毫秒
1.
Gravitactic orientation in the flagellate Euglena gracilis is mediated by an active physiological receptor rather than a passive alignment of the cells. During a recent space flight on the American shuttle Columbia the cells were subjected to different accelerations between 0 and 1.5 x g and tracked by computerized real-time image analysis. The dependence of orientation on acceleration followed a sigmoidal curve with a threshold at < or = 0.16 x g and a saturation at about 0.32 x g. No adaptation of the cells to the conditions of weightlessness was observed over the duration of the space mission (12 days). Under terrestrial conditions graviorientation was eliminated when the cells were suspended in a medium the density of which (Ficoll) equaled that of the cell body (1.04 g/ml) and was reversed at higher densities indicating that the whole cytoplasm exerts a pressure on the respective lower membrane. There it probably activates stretch-sensitive calcium specific ion channels since gravitaxis can be affected by gadolinium which is a specific inhibitor of calcium transport in these structures. The sensory transduction chain could involve modulation of the membrane potential since ion channel blockers, ionophores and ATPase inhibitors impair graviperception.  相似文献   
2.
Space radiation has been monitored successfully using the Radiation Risks Radiometer-Dosimeter (R3D) installed at the ESA EXPOSE-R (R3DR) facility outside of the Russian Zvezda module of the International Space Station (ISS) between March 2009 and January 2011. R3DR is a Liulin type spectrometer–dosimeter with a single Si PIN detector 2 cm2 of area and 0.3 mm thick. The R3DR instrument accumulated about 2 million measurements of the absorbed dose rate and flux of 10 s resolution. The total external and internal shielding before the detector of R3DR device is 0.41 g cm−2. The calculated stopping energy of normally incident particles to the detector is 0.78 MeV for electrons and 15.8 MeV for protons. After the Coronal Mass Ejection (CME) at 09:54 UTC on 3 April 2010, a shock was observed at the ACE spacecraft at 0756 UTC on 5 April, which led to a sudden impulse on Earth at 08:26 UTC. Nevertheless, while the magnetic substorms on 5 and 6 of April were moderate; the second largest in history of GOES fluence of electrons with energy >2 MeV was measured. The R3DR data show a relatively small amount of relativistic electrons on 5 April. The maximum dose rate of 2323 μGy day−1 was reached on 7 April; by 9 April, a dose of 6600 μGy was accumulated. By the end of the period on 7 May 2010 a total dose of 11,587 μGy was absorbed. Our data were compared with AE-8 MIN, CRESS and ESA-SEE1 models using SPENVIS and with similar observations on American, Japanese and Russian satellites.  相似文献   
3.
One important type of problem for particle simulation of plasmas, is one which is bounded and has external sources and sinks. For example, there are problems with antennas for studying RF heating or current drive in fusion plasmas, or problems in space simulation where particles are injected at one boundary with some specified energy or momentum distribution. In understanding such simulation results, it is useful to know how energy and momentum are flowing inside the plasma. This can be accomplished in electrostatic particle simulations on the basis of some theorems for energy and momentum flow. An important application of these theorems occurs when many waves are involved in producing some effect, e.g., generating a current by RF. One can then extract the contribution of each wave to the effect to identify which are most important. Examples of such wave-particle diagnostics will be given.  相似文献   
4.
The radio-metric tracking data received from the Pioneer 10 and 11 spacecraft from the distances between 20–70 astronomical units from the Sun has consistently indicated the presence of a small, anomalous, blue-shifted Doppler frequency drift that limited the accuracy of the orbit reconstruction for these vehicles. This drift was interpreted as a sunward acceleration of a P =(8.74±1.33)×10?10 m/s2 for each particular spacecraft. This signal has become known as the Pioneer anomaly; the nature of this anomaly is still being investigated. Recently new Pioneer 10 and 11 radio-metric Doppler and flight telemetry data became available. The newly available Doppler data set is much larger when compared to the data used in previous investigations and is the primary source for new investigation of the anomaly. In addition, the flight telemetry files, original project documentation, and newly developed software tools are now used to reconstruct the engineering history of spacecraft. With the help of this information, a thermal model of the Pioneers was developed to study possible contribution of thermal recoil force acting on the spacecraft. The goal of the ongoing efforts is to evaluate the effect of on-board systems on the spacecrafts’ trajectories and possibly identify the nature of this anomaly. Techniques developed for the investigation of the Pioneer anomaly are applicable to the New Horizons mission. Analysis shows that anisotropic thermal radiation from on-board sources will accelerate this spacecraft by ~41×10?10 m/s2. We discuss the lessons learned from the study of the Pioneer anomaly for the New Horizons spacecraft.  相似文献   
5.
6.
Body hydration decreases significantly during hypokinesia (HK) (diminished movement), but little is known about the effect of fluid and salt supplements (FSS) on body hydration during HK. The aim of this study was to measure the effect of FSS on body hydration during HK. Studies were done during 30 days pre HK period and 364 days HK period. Thirty male athletes aged 24.5 +/- 6.6 yr were chosen as subjects. They were equally divided into three groups: unsupplemented ambulatory control subjects (UACS), unsupplemented hypokinetic subjects (UHKS) and supplemented hypokinetic subjects (SHKS). Hypokinetic subjects were limited to an average walking distance of 0.7 km day-1. The SHKS group took daily 30 ml of water/kg body weight and 0.1 g of sodium chloride (NaCl)/kg body weight. Control subjects experienced no changes in their professional training and routine daily activities. Plasma volume (PV), urinary and plasma sodium (Na) and potassium (K), plasma osmolality, plasma protein, whole blood hemoglobin (Hb) and hematocrit (Hct), plasma renin activity (PRA) plasma aldosterone (PA) levels, physical characteristics, food and fluid intakes were measured. Plasma osmolality, plasma protein, urinary and plasma Na and K, whole blood Hct and Hb, PRA and PA levels decreased significantly (p < or = 0.01), while PV and body weight increased significantly (p < or = 0.01) in the SHKS group when compared with the UHKS group and did not change when compared with the UACS group. Plasma osmolality, plasma protein, urinary and plasma Na and K, PRA and PA, whole blood Hb and Hct levels increased significantly (p < or = 0.01), while PV body weight, food and fluid intakes decreased significantly (p < or = 0.01) in UHKS group when compared with the SHKS and UACS groups. The measured parameters did not change in the UACS group when compared with their baseline control values. It was shown that during HK body hydration decreased significantly, while during HK and FSS body hydration increased significantly. It was concluded that daily intake of FSS prevents the decrease of PV and blunts the increase of activity of the PRA and PA during prolonged HK.  相似文献   
7.
8.
Euglena gracilis is a photosynthetic, unicellular flagellate found in eutrophic freshwater habitats. The organisms control their vertical position in the water column using gravi- and phototaxis. Recent experiments demonstrated that negative gravitaxis cannot be explained by passive buoyancy but by an active physiological mechanism. During space experiments, the threshold of gravitaxis was determined to be between 0.08 and 0.12 x g. A strong correlation between the applied acceleration and the intracellular cAMP and Ca2+ was observed. The results support the hypothesis, that the cell body of Euglena, which is denser than the surrounding medium exerts a pressure onto the lower membrane and activates mechanosensitive Ca2+ channels. Changes in the membrane potential and the cAMP concentration are most likely subsequent elements in a signal transduction chain, which results in reorientation strokes of the flagellum.  相似文献   
9.
Photosynthetic flagellates are among the most intensely studied unicellular organisms in the field of graviperception and gravitaxis. While the phenomenon of graviorientation has been known for many decades, only recently was the molecular mechanism unveiled. Earlier hypotheses tried to explain the precise orientation by a passive buoy mechanism assuming the tail end to be heavier than the front. In the photosynthetic flagellate Euglena gracilis, the whole cell body is denser than the surrounding medium, pressing onto the lower cell membrane where it seems to activate mechanosensitive ion channels specific for calcium. The calcium entering the cells during reorientation can be visualized by the fluorescence probe, Calcium Crimson. Cyclic AMP is likewise involved in the molecular pathway. Inhibitors of calcium channels and ionophores impair gravitaxis while caffeine, a blocker of the phosphodiesterase, enhances the precision of orientation.  相似文献   
10.
The present paper deals with the study the dynamics of the spacecraft with gyro-gravitational system of stabilization. The deployment of the boom of the gravitational stabilizer commences after placing the spacecraft into the orbit and completion of the preliminary damping, when the gyroscopes are uncaged. Primarily the boom is the pre-stressed tape wound on the special drum. When the drum starts deploying the tape, it turns into the elastic cylindrical rod with the mass at its tip. The objective of the study is the creation of the generalized mathematical model and the conducting of the computer modelling of the spacecraft dynamics. The equations of motion are worked out with the use of the Lagrangian formalism. The numerical simulation of typical modes of system functioning is conducted. It is shown that the folding and the following deployment of the boom result in the turn of the spacecraft by 180° about the axis of the pitch. The results illustrate the behaviour of the main system variables.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号