首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   0篇
航空   17篇
航天技术   26篇
航天   6篇
  2021年   1篇
  2015年   1篇
  2014年   1篇
  2011年   4篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1986年   3篇
  1984年   4篇
  1983年   1篇
排序方式: 共有49条查询结果,搜索用时 17 毫秒
1.
This paper discusses the advantages of incorporating active sidesticks into a modern aircraft cockpit. Active sidestick controllers for manual pilot inputs in pitch and roll are examined for commercial transport aircraft. Options and requirements for sidesticks are reviewed. The recommendation of an active sidestick controller is developed providing both cross-cockpit coupling and autopilot backdrive capability. These characteristics provide pilot cues identical to traditional cable-linked column/yoke configurations  相似文献   
2.
The influence of cosmic radiation and/or microgravity on insect development was studied during the 7 day German Spacelab Mission D1. Eggs of Carausius morosus of five stages differing in sensitivity to radiation and in capacity to regeneration were allowed to continue their development in the BIORACK 22°C incubator, either at microgravity conditions or on the 1 g reference centrifuge. Using the Biostack concept - eggs in monolayers were sandwiched between visual track detectors - and the 1 g reference centrifuge, we were able to separate radiation effects from microgravity effects and also from combined effects of these two factors in space. After retrieval, hatching rates, growth kinetics and anomaly frequencies were determined in the different test samples. The early stages of development turned out to be highly sensitive to single hits of cosmic ray particles as well as to the temporary exposure to microgravity during their development. In some cases, the combined action of radiation and microgravity even amplified the effects exerted by the single parameters of space. Hits by single HZE particles caused early effects, such as body anomalies, as well as late effects, such as retarded growth after hatching. Microgravity exposure lead to a reduced hatching rate. A synergistic action of HZE particle hits and microgravity was established in the unexpectedly high frequency of anomal larvae. However, it cannot be excluded, that cosmic background radiation or low LET HZE particles are also causally involved in damage observed in the microgravity samples.  相似文献   
3.
A wide variety of observations on cells in space, admittedly made under constraining and unnatural conditions in many cases, have led to experimental results that were surprising or unexpected. Reproducibility, freedom from artifacts, and plausibility must be considered in all cases, even when results are not surprising. The papers in the symposium on "Theories and Models on the Biology of Cells in Space" are dedicated to the subject of the plausibility of cellular responses to gravity--inertial accelerations between 0 and 9.8 m/s2 and higher. The mechanical phenomena inside the cell, the gravitactic locomotion of single eukaryotic and prokaryotic cells, and the effects of inertial unloading on cellular physiology are addressed in theoretical and experimental studies.  相似文献   
4.
The experiment was flown in different locations inside BIORACK on the D1 mission. It contained different plastic detectors (cellulose nitrate, Lexan, and CR 39) and emulsions to measure the high LET components of the radiation environment. For low LET measurements thermoluminescence dosimeters (L iF) were used. The paper gives data about total dose, charge, energy, and LET spectra so far obtained. These data are compared with data of previous spaceflights.  相似文献   
5.
Our understanding of gravitational effects (inertial effects in the vicinity of 1 x g) on cells has matured to a stage at which it is possible to define, on the basis of experimental evidence, extracellular effects on small cells and intracellular effects on eukaryotic gravisensing cells. Yet undetermined is the nature of response, if any, of those classes of cells that are not governed solely by extracellular physical events (as are prokaryotes) and are devoid of obvious mechanical devices for sensing inertial forces (such as those possessed by certain plant cells and sensory cells of animals). This "in-between" class of cells needs to be understood on the basis of the combination of intracellular and extracellular gravity-dependent processes that govern experimentally-measurable variables that are relevant to the cell's responses to modified inertial forces. The forces that certain cell types generate or respond to are therefore compared to those imposed by approximately 1 x g in the context of cytoskeletal action and symmetry-breaking pathways.  相似文献   
6.
In this paper, prognostic tools are developed to detect the onset of electrical failures in an aircraft power generator, and to predict the generator's remaining useful life (RUL). Focus is on the rotor circuit since failure mode, effects, and criticality analysis (FMECA) studies indicate that it is a high priority candidate for condition monitoring. A signature feature is developed and tested by seeded fault experiments to verify that the initial stages of rotor faults are observable under diverse generator load conditions. A tracking filter is used to assess the damage state and predict generator RUL. This information helps to avoid unexpected failures while reducing the overall life-cycle cost of the system.  相似文献   
7.
Marine radiobeacon networks are being used to broadcast differential Global Positioning System (DGPS) corrections to marine users. The correction data digitally modulate signals from some of the existing marine radiobeacons, which operate in the 285 to 325 kHz band, creating DGPS/radiobeacons. The corrections improve the accuracy of the GPS fix from 100 m to 5-10 m, and provide position fixing service for many marine applications which are too demanding for the normal GPS service. Forward error correction can be used to improve the reliability or range of the DGPS/radiobeacon signal. The improvements made possible by channel coding are analyzed, and a code for DGPS/radiobeacons is recommended  相似文献   
8.
This paper develops an empirical confidence bound for barometric altimeter altitude errors and shows how this bound may improve the performance of GPS-based approach and landing systems. This empirical bound is developed using historical meteorological data collected at a set of geographically diverse locations over a thirty year period. The confidence bound developed is shown to provide a Gaussian overbound on altimeter altitude errors in standard atmospheric conditions between a 10-5 and 10-6 confidence level. This confidence bound is integrated into the standard methodology for analyzing the performance of GPS-based landing systems and the results of a performance trade study using the confidence bound are presented. The results show that incorporating the empirical barometric altimeter confidence bound provides an increase in the coterminous United States (CONUS) service volume for lateral precision with vertical guidance (LPV) type approaches. While this increase is approximately 2% for an L1 single-frequency GPS user, it jumps to roughly 40% for an L5 single-frequency user.  相似文献   
9.
High energy, high-Z (HZE) particles are present in high-altitude and high-inclination satellite orbits. Most of the HZE dose above LET = 200 keV/micrometer is due to Fe nuclei. Individual HZE particles can damage several cells adjacent to one another along the particle track in tissue. The outcome has been described as a "microlesion" by D. Grahn. The present study attempts to define conditions for microlesions in specific tissues, to seek biological evidence that microlesions are produced, and to evaluate the microlesion as a potentially useful unit of dose in assessing hazards to spaceworkers. Microlesions in individuals cells and hair follicles have been described. Microbial studies have provided some evidence for independent secondary electron action. Whether or not a few hundred microlesions would be damaging to the whole organism depends upon the nature of damage to critical tissues. For example, cancer may occur if microlesions kill several cells in a straight line and mutate other cells alongside the particle track. Fe particle irradiation of the mouse Harderian gland (Fry et al., this issue) produces tumors efficiently. Microlesions in the lens, cornea, and retina need to be considered. Further dialogue is required before a final decision can be made concerning the most appropriate way to assess the HZE hazard.  相似文献   
10.
Several modifications of differentiated functions of animal cells cultivated in vitro have been reported when cultures have been exposed to increased or decreased inertial acceleration fields by centrifugation, clinorotation, and orbital space flight. Variables modified by clinorotation conditions include inertial acceleration, convection, hydrostatic pressure, sedimentation, and shear stress, which also affect transport processes in the extracellular chemical environment. Autocrine, paracrine and endocrine substances, to which cells are responsive via specific receptors, are usually transported in vitro (and possibly in certain embryos) by convection and in vivo by a circulatory system or ciliary action. Increased inertial acceleration increases convective flow, while microgravity nearly abolishes it. In the latter case the extracellular transport of macromolecules is governed by diffusion. By making certain assumptions it is possible to calculate the Peclet number, the ratio of convective transport to diffusive transport. Some, but not all, responses of cells in vitro to modified inertial environments could be manifestations of modified extracellular convective flow.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号