首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
航天技术   2篇
航天   1篇
  2021年   1篇
  2019年   1篇
  2012年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
We analyzed high-angular rate streaks first recorded by OSIRIS-REx’s MapCam during a 2017 search for Earth Trojan asteroids. We interpret them as water-ice particles that translated across the imager’s field of view, originating from the spacecraft itself. Their translation velocities approximated 0.1–1?m/s based on reasonable conclusions about their range. Pursuing several lines of investigation to seek a coherent hypothesis, we conclude that the episodic releases of the water ice particles are associated with spacecraft attitudes that resulted in solar illumination of previously shadowed regions. This correlation suggests that the OSIRIS-REx spacecraft itself possesses micro-climatic zones consisting of hot regions and cold traps that may temporarily potentially pass volatiles back and forth before losing most of them.  相似文献   
2.
We aim to provide satellite operators and researchers with an efficient means for evaluating and mitigating collision risk during the design process of mega-constellations. We first introduce a novel algorithm for conjunction prediction that relies on large-scale numerical simulations and uses a sequence of filters to greatly reduce its computational expense. We then use this brute-force algorithm to establish baselines of endogenous (intra-constellation), or self-induced, conjunction events for the FCC-reported designs of the OneWeb LEO and SpaceX Starlink mega-constellations. We demonstrate how these deterministic results can be used to validate more computationally efficient, stochastic techniques for close-encounter prediction by adopting a new probabilistic approach from Solar-System dynamics as a simple test case. Finally, we show how our methodology can be applied during the design phase of large constellations by investigating Minimum Space Occupancy (MiSO) orbits, a generalization of classical frozen orbits that holistically account for the perturbed-Keplerian dynamics of the Earth-satellite-Moon-Sun system. The results indicate that the adoption of MiSO orbital configurations of the proposed mega-constellations can significantly reduce the risk of endogenous collisions with nearly indistinguishable adjustments to the nominal orbital elements of the constellation satellites.  相似文献   
3.
Abstract We examined a low-energy mechanism for the transfer of meteoroids between two planetary systems embedded in a star cluster using quasi-parabolic orbits of minimal energy. Using Monte Carlo simulations, we found that the exchange of meteoroids could have been significantly more efficient than previously estimated. Our study is relevant to astrobiology, as it addresses whether life on Earth could have been transferred to other planetary systems in the Solar System's birth cluster and whether life on Earth could have been transferred from beyond the Solar System. In the Solar System, the timescale over which solid material was delivered to the region from where it could be transferred via this mechanism likely extended to several hundred million years (as indicated by the 3.8-4.0?Ga epoch of the Late Heavy Bombardment). This timescale could have overlapped with the lifetime of the Solar birth cluster (~100-500?Myr). Therefore, we conclude that lithopanspermia is an open possibility if life had an early start. Adopting parameters from the minimum mass solar nebula, considering a range of planetesimal size distributions derived from observations of asteroids and Kuiper Belt objects and theoretical coagulation models, and taking into account Oort Cloud formation models, we discerned that the expected number of bodies with mass>10?kg that could have been transferred between the Sun and its nearest cluster neighbor could be of the order of 10(14) to 3·10(16), with transfer timescales of tens of millions of years. We estimate that of the order of 3·10(8)·l (km) could potentially be life-bearing, where l is the depth of Earth's crust in kilometers that was ejected as the result of the early bombardment. Key Words: Extrasolar planets-Interplanetary dust-Interstellar meteorites-Lithopanspermia. Astrobiology 12, 754-774.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号