首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航空   2篇
航天技术   2篇
航天   2篇
  2012年   1篇
  2009年   2篇
  2007年   1篇
  1996年   1篇
  1986年   1篇
排序方式: 共有6条查询结果,搜索用时 359 毫秒
1
1.
The Polar Balloon Atmospheric Composition Experiment (P-BACE) is a new generation of neutral gas mass spectrometer based on the time-of-flight principle. P-BACE is the scientific experiment on the Mars Environment Analog Platform (MEAP) flown successfully on a balloon mission in summer 2008. The MEAP mission was flown with a 334,000 m3 helium balloon in the stratosphere on a semicircular trajectory from northern Sweden around the North Pole to Canada using the summer northern hemispheric wind current. The atmospheric conditions at an atmospheric altitude of 35–40 km are remarkably similar to those on the surface of Mars and thus the balloon mission was an ideal testbed for our mass spectrometer P-BACE. Originally this instrument was designed for in situ measurements of the chemical composition of the Martian atmosphere.P-BACE has a unique mass range from 0 to 1000 amu/q with a mass resolution mm (FWHM) > 1000, and the dynamic range is at least six orders of magnitude. During this experiment, the acquisition of one mass spectrum is a sum of 65,535 single spectra, recorded in a time frame of 66 s.The balloon mission lasted 5 days and had successfully demonstrated the functionality of the P-BACE instrument during flight conditions. We had recorded more than 4500 mass spectra. With little modifications, P-BACE can be used on a planetary mission for Mars, but for example also for Venus or Mercury, if placed on a satellite.  相似文献   
2.
The article's main theme is the ‘turbulence modelling’ used in present days' computational schemes. This modelling is an effort to account for the influence of turbulent motion on diffusion processes, and reflects our efforts to bridge what is generally recognized as the ‘closure gap’, i.e. to replace a needed phenomenological relation(s) with hypotheses of some kind. In this way one tries to remedy our lack of knowledge of turbulent motion. For that purpose a number of ideas and concepts over the past 60 years is mentioned and their incorporation in numerical analysis is discussed. The main emphasis is placed on the physical concepts and their consequences.  相似文献   
3.
4.
The Lunar CRater Observations and Sensing Satellite (LCROSS) mission impacted a spent Centaur rocket stage into a permanently shadowed region near the lunar south pole. The Sheperding Spacecraft (SSC) separated ~9 hours before impact and performed a small braking maneuver in order to observe the Centaur impact plume, looking for evidence of water and other volatiles, before impacting itself. This paper describes the registration of imagery of the LCROSS impact region from the mid- and near-infrared cameras onboard the SSC, as well as from the Goldstone radar. We compare the Centaur impact features, positively identified in the first two, and with a consistent feature in the third, which are interpreted as a 20 m diameter crater surrounded by a 160 m diameter ejecta region. The images are registered to Lunar Reconnaisance Orbiter (LRO) topographical data which allows determination of the impact location. This location is compared with the impact location derived from ground-based tracking and propagation of the spacecraft’s trajectory and with locations derived from two hybrid imagery/trajectory methods. The four methods give a weighted average Centaur impact location of ?84.6796°, ?48.7093°, with a 1σ uncertainty of 115 m along latitude, and 44 m along longitude, just 146 m from the target impact site. Meanwhile, the trajectory-derived SSC impact location is ?84.719°, ?49.61°, with a 1σ uncertainty of 3 m along the Earth vector and 75 m orthogonal to that, 766 m from the target location and 2.803 km south-west of the Centaur impact. We also detail the Centaur impact angle and SSC instrument pointing errors. Six high-level LCROSS mission requirements are shown to be met by wide margins. We hope that these results facilitate further analyses of the LCROSS experiment data and follow-up observations of the impact region.  相似文献   
5.
The MEAP (Mars Environment Analogue Platform) mission was to fly a stratospheric balloon on a semicircular trajectory around the North Pole in summer 2008. The balloon platform carried the high-resolution neutral gas mass spectrometer P-BACE (Polar Balloon Atmospheric Composition Experiment) as scientific payload. MEAP/P-BACE is a joint project between the Esrange Space Center, Sweden, the University of Bern, Switzerland and the Swedish Institute of Space Physics (IRF), Kiruna, Sweden. Mission objectives were to validate the platform for future long duration flights around the North pole, to validate the P-BACE instrument design for planetary mission applications (conditions in the Earth stratosphere are similar to the conditions at the Mars surface), to study variation of the stratospheric composition during the flight and to gain experience in balloon based mass spectrometry. All objectives were fulfilled.  相似文献   
6.
Prebiotic possibilities for the synthesis of interstellar ribose through a protic variant of the formose reaction under gas-phase conditions were studied in the absence of any known catalyst. The ion-molecule reaction products, diose and triose, were sought by mass spectrometry, and relevant masses were observed. Ab initio calculations were used to evaluate protic formose mechanism possibilities. A bilateral theoretical and experimental effort yielded a physical model for glycoaldehyde generation whereby a hydronium cation can mediate formaldehyde dimerization followed by covalent bond formation leading to diose and water. These results advance the possibility that ion-molecule reactions between formaldehyde (CH(2)O) and H(3)O(+) lead to formose reaction products and inform us about potential sugar formation processes in interstellar space.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号