首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
航天技术   1篇
  2021年   1篇
排序方式: 共有1条查询结果,搜索用时 15 毫秒
1
1.
Deorbit methods have been employed to remove space debris from orbit. One of these methods is to utilize atmospheric drag. In this method, a membrane loaded into the spacecraft is expanded to increase atmospheric drag. Although this method works without requiring fuel, it has the disadvantage of a high risk of collision with other debris owing to its larger area. Area-time product and energy-to-mass ratio have been used as indices to evaluate the risk of collisions between spacecraft and debris. However, the evaluation criteria were uncertain because these two indices are independent. In this paper, we propose a new evaluation index, single-sheet collision factor (SSCF), that comprehensively evaluates the collision risk based on experiments simulating debris collisions. As a result of the hypervelocity collision experiment, we found that the penetration-area mass of the spacecraft affects the severity of debris collisions. In this paper, the product of the exterior-wall thickness, the exterior-wall density, and the space debris cross-sectional area defines the penetration-area mass of the spacecraft. Furthermore, we compare and evaluate various deorbit methods using SSCF. The comparison showed that the penetration-area mass of the SSCF could be quantitatively determined for the debris-collision severity due to difference in structural materials of spacecraft. SSCF will be used to create rules for space-environment conservation with the expansion of the space-development market.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号