首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   2篇
航空   3篇
航天技术   1篇
综合类   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2009年   1篇
排序方式: 共有5条查询结果,搜索用时 281 毫秒
1
1.
工作温度是决定航空发动机、燃气轮机和高超声速飞行器发动机等大国重器的燃油利用效率和能量转换效率的关键因素。热障涂层(Thermal Barrier Coatings,TBCs)材料主要应用于高温合金零部件表面隔热降温,以提高合金零部件的工作温度。当前使用的热障涂层材料氧化钇稳定氧化锆(Yttria Stabilized Zirconia,YSZ)存在热导率高、热膨胀系数失配和工作温度低等问题,无法满足应用需求,亟需开发新一代低热导、高工作温度和长寿命的热障涂层材料。稀土锆酸盐、稀土磷酸盐、稀土硅酸盐、稀土铝酸盐和稀土铈酸盐等陶瓷材料存在断裂韧性不足、热膨胀系数低和高温相稳定性差等问题,无法取代YSZ成为新一代超高温热障涂层材料。铁弹性稀土钽酸盐RETaO4(RE代表稀土元素)陶瓷具有独特的铁弹性相变增韧、低热导率、高热膨胀系数和低杨氏模量等特点,被作为下一代超高温热障涂层材料进行了广泛研究。本文总结了此类稀土钽酸盐陶瓷在热学、力学和结构等方面的研究进展,主要包括晶体结构、微观组织以及力学(硬度、模量和声速)和热学(热导率、热膨胀系数和高温相稳定性)性质等,探讨其作为下一代超高温热障涂层材料的可能性,为未来研究提供参考。  相似文献   
2.
利用有限域上奇异酉几何构作了一个新的带仲裁的认证码.并计算了这个码的参数。当编码规则按等概率分布选取时,计算出了各种攻击成功的概率。  相似文献   
3.
热障涂层(Thermal Barrier Coatings,TBCs)是推进超高速飞行器与先进航空发动机发展的关键技术。目前最常用的热障涂层材料是氧化钇稳定氧化锆(YSZ),但是由于其存在高温相变会产生体积差这一致命缺陷,已不能满足下一代发动机的发展需求。故而,开发新一代热障涂层已势在必行。经试验证明,采用固相法所制备的稀土钽酸盐致密块体具有更加优异的热物理性能和机械性能:极低的高温热导率(1.1~1.3W/(m·K),1000℃),相比YSZ系列热导率值下降了50%;更大的降温梯度(300~500℃);基于高温铁弹增韧机制的良好断裂韧性。此外,稀土钽酸盐作为非氧离子缺陷型热导化合物,是一种氧离子传输的绝缘体,能够有效阻止热氧化物(Thermal Growth Oxidies,TGO)层的生长,大大延长热障涂层的热循环使用寿命,有望成为新一代应用于超高速飞行器和航空发动机的热障涂层材料。  相似文献   
4.
陶瓷基复合材料作为广泛应用于航空航天领域的先进结构材料,在实际服役环境中依赖于环境障涂层的保护作用,钽酸盐以其优异的高温热–力学性能和与陶瓷基复合材料适配的热膨胀系数((3.5~5.5)×10–6 K–1)成为极具潜力的环境障涂层材料。通过大气等离子喷涂(Atmospheric plasma spraying,APS)工艺在碳化硅纤维增强碳化硅基复合材料(SiCf/SiC)表面成功制备了(AlTax)B2–2xO4/(RE–Al)TaO4复合涂层,探索了涂层的最佳热处理工艺条件,同时对不同涂层结构方案的复合材料涂层试样进行1300℃热疲劳考核和弯曲强度测试,筛选出具有最优抗热疲劳性能的涂层结构,并通过XRD、SEM以及金相显微镜对涂层的表面形貌、裂纹扩展及元素分布进行了分析表征,相对于传统材料涂层,钽酸盐复合涂层以其在高温下优越的综合性能成为极具潜力的环境障涂层。  相似文献   
5.
本文旨在介绍一项具有重大科学意义和应用价值的深空探测任务构想.该任务将对驱动恒星大尺度爆发过程的中心结构(即磁重联电流片)进行抵近(原位)探测,主要目的是详细研究发生在离地球最近的恒星-太阳上的大尺度磁重联过程的精细物理特征,揭示太阳系中最为剧烈的能量释放过程(即太阳爆发或太阳风暴)的奥秘.该任务的科学目标:磁重联过程是发生在宇宙磁化等离子体中的能量转换和释放的核心过程,其一直是太阳物理、等离子体物理、空间科学研究领域内的一个极为重要的研究课题及研究方向.通过抵近观测可以将同样设备的分辨能力提高5~20倍,将提供在地球附近无法获得的太阳超清晰图像以及相应的物理信息,让人类在一个前所未有的平台上来研究、认识和了解太阳,从而解决太阳爆发核心驱动过程的精细物理性质与日冕加热等长期困扰太阳物理研究领域的难题.   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号