首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
  国内免费   2篇
航空   2篇
航天技术   10篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2014年   2篇
  2013年   2篇
  2012年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
One-to-one relation with its causative lightning discharges and propagation features of night-time whistlers recorded at low-latitude station, Allahabad (geomag. lat. 16.05°N, = 1.08), India, from continuous observations made during 1–7 April, 2011 have been studied. The whistler observations were made using the Automatic Whistler Detector (AWD) system and AWESOME VLF receiver. The causative lightning strikes of whistlers were checked in data provided by World-Wide Lightning Location Network (WWLLN). A total of 32 whistlers were observed out of which 23 were correlated with their causative lightnings in and around the conjugate location (geom. lat. 9.87°S) of Allahabad. A multi-flash whistler is also observed on 1 April with dispersions 15.3, 17.5 and 13.6 s1/2. About 70% (23 out of 32) whistlers were correlated with the WWLLN detected causative lightnings in the conjugate region which supports the ducted mode of propagation at low latitude. The multi-flash and short whistlers also propagated most likely in the ducted mode to this station.  相似文献   
2.
A comprehensive statistical analysis of the cloud base height (CBH) measured by ground-based Vaisala ceilometer (CL31) has been performed to study different layers of the cloud in the lower troposphere up to 7.5?km height over Ahmedabad, western India during 2014 and 2015. The total observations (~69%) of cloud by using ceilometer show annual cloud occurrence frequency of around 64%. Seasonal variation of CBH and cloud occurrence frequency reveal that the maximum/minimum cloud cover is found during southwest (SW) Indian summer monsoon/pre-monsoon season. Three CBHs (CBH1, CBH2, and CBH3) are presented in monsoon period due to high cloud occurrence, and two CBHs (CBH1 and CBH2) are observed in other seasons due to low cloud occurrence by ceilometer over the observational site. The CBH1 (~100–2000?m) and CBH2 (500–3000?m) are observed during SW monsoon and summer season, respectively. The CBH3 is occurred usually in SW monsoon season. Moreover, the cloud cover during the day and night time shows that the occurrence of cloud is more frequent in daytime than nighttime during pre-monsoon and post-monsoon season. The statistical analysis of cloud with ground-based observations is also performed in this study that may be useful for the development/improvement of regional weather and climate models to reduce the uncertainty in the prediction.  相似文献   
3.
The source region and propagation mechanism of low latitude whistlers (Geomag. lat. <30°) have puzzled scientific community for last many decades. In view of recent reports, there is consensus on the source region of low latitude whistlers in the vicinity of the conjugate point. But the plausible conditions of ionospheric medium through which they travel are still uncertain. In addition to that, the whistlers in daytime are never observed at geomagnetic latitudes less than 20°. Here, for the first time, we present a rare observations of whistlers during sunlit hours from a very low-latitude station Allahabad (Geomag. Lat: 16.79°N, L = 1.08) in India on 04 February 2011. More than 90 whistlers are recorded during 1200–1300 UT during which the whole propagation path from lightning source region to whistler observation site is under sunlit. The favorable factors that facilitated the whistlers prior to the sunset are investigated in terms of source lightning characteristics, geomagnetic and background ionospheric medium conditions. The whistler activity period was found to be geomagnetically quiet. However, a significant suppression in ionospheric total electron content (TEC) compared to its quiet day average is found. This shows that background ionospheric conditions may play a key role in low latitude whistler propagation. This study reveals that whistlers can occur under sunlit hours at latitudes as low as L = 1.08 when the source lightning and ionospheric medium characteristics are optimally favorable.  相似文献   
4.
Using the physics based model SUPIM and FORMOSAT-3/COSMIC electron density data measured at the long deep solar minimum (2008–2010) we investigate the longitude variations of the north–south asymmetry of the ionosphere at low latitudes (±30° magnetic). The data at around diurnal maximum (12:30–13:30 LT) for magnetically quiet (Ap ? 15) equinoctial conditions (March–April and September–October) are presented for three longitude sectors (a) 60°E–120°E, (b) 60°W–120°W and (c) 15°W–75°W. The sectors (a) and (b) have large displacements of the geomagnetic equator from geographic equator but in opposite hemispheres with small magnetic declination angles; and sector (c) has large declination angle with small displacement of the equators; vertical E × B drift velocities also have differences in the three longitude sectors. SUPIM investigates the importance of the displacement of the equators, magnetic declination angle, and E × B drift on the north–south asymmetry. The data and model qualitatively agree; and indicate that depending on longitudes both the displacement of the equators and declination angle are important in producing the north–south asymmetry though the displacement of the equators seems most effective. This seems to be because it is the displacement of the equators more than the declination angle that produces large north–south difference in the effective magnetic meridional neutral wind velocity, which is the main cause of the ionospheric asymmetry. For the strong control of the neutral wind, east–west electric field has only a small effect on the longitude variation of the ionospheric asymmetry. Though the study is for the long deep solar minimum the conclusions seem valid for all levels of solar activity since the displacement of the equators and declination angle are independent of solar activity.  相似文献   
5.
In this paper we report pulsing hiss emissions observed at the low latitude station, Jammu (geomag. lat. 22°26′N, L = 1.17) in which intensity decreases with the increase in frequency. The entire dynamic spectra contain somewhat irregular structure. To explain these we propose that the hiss emissions are generated through Doppler-shifted cyclotron interactions near the equator and propagate to the earth in the whistler-mode. Further, ULF waves present in the generation region modulate the intensity of the emission resulting in the pulsing nature. The growth rates are computed and discussed in the light of recent works.  相似文献   
6.
In the present work the cosmic ray intensity data recorded with ground-based neutron monitor at Deep River has investigated taking into account the associated interplanetary magnetic field and solar wind plasma data during 1981—1994.A large number of days having abnormally high/low amplitudes for successive number of five or more days as compared to annual average amplitude of diurnal anisotropy have been taken as high/low amplitude anisotropic wave train events(HAE/LAE).The amplitude of the diurnal anisotropy of these events is found to increase on the days of magnetic cloud as compared to the days prior to the event and it found to decrease during the later period of the event as the cloud passes the Earth.The High-Speed Solar Wind Streams(HSSWS)do not play any significant role in causing these types of events. The interplanetary disturbances(magnetic clouds)are also effective in producing cosmic ray decreases.Hαsolar flares have a good positive correlation with both amplitude and direction of the anisotropy for HAEs, whereas PMSs have a good positive correlation with both amplitude and direction of the anisotropy for LAEs. The source responsible for these unusual anisotropic wave trains in CR has been proposed.  相似文献   
7.
Response of the D-region of the ionosphere to the total solar eclipse of 22 July 2009 at low latitude, Varanasi (Geog. lat., 25.27° N; Geog. long., 82.98° E; Geomag. lat. = 14° 55’ N) was investigated using ELF/VLF radio signal. Tweeks, a naturally occurring VLF signal and radio signals from various VLF navigational transmitters are first time used simultaneously to study the effect of total solar eclipse (TSE). Tweeks occurrence is a nighttime phenomena but the obscuration of solar disc during TSE in early morning leads to tweek occurrence. The changes in D-region ionospheric VLF reflection heights (h) and electron density (ne: 22.6–24.6 cm−3) during eclipse have been estimated from tweek analysis. The reflection height increased from ∼89 km from the first occurrence of tweek to about ∼93 km at the totality and then decreased to ∼88 km at the end of the eclipse, suggesting significant increase in tweek reflection height of about 5.5 km during the eclipse. The reflection heights at the time of totality during TSE are found to be less by 2–3 km as compared to the usual nighttime tweek reflection heights. This is due to partial nighttime condition created by TSE. A significant increase of 3 dB in the strength of the amplitude of VLF signal of 22.2 kHz transmitted from JJI-Japan is observed around the time of the total solar eclipse (TSE) as compared to a normal day. The modeled electron density height profile of the lower ionosphere depicts linear variation in the electron density with respect to solar radiation as observed by tweek analysis also. These low latitude ionospheric perturbations on the eclipse day are discussed and compared with other normal days.  相似文献   
8.
The thermal properties of InSb, GaSb and InxGa1−xSb, such as the viscosity, wetting property, and evaporation rate, were investigated in preparation for the crystal growth experiment on the International Space Station (ISS). The viscosity of InGaSb, which is an essential property for numerical modeling of crystal growth, was evaluated. In addition, the wetting properties between molten InxGa1−xSb and quartz, BN, graphite, and C-103 materials were investigated. The evaporation rate of molten InxGa1−xSb was measured to determine the affinity of different sample configurations. From the measurements, it was found that the viscosity of InxGa1−xSb was between that of InSb and GaSb. The degree of wetting reaction between molten InxGa1−xSb and the C-103 substrate was very high, whereas that between molten InxGa1−xSb and quartz, BN, and graphite substrates was very low. The results suggest that BN and graphite can be used as materials to cover InSb and GaSb samples inside a quartz ampoule during the microgravity experiments. In addition, the difference of the evaporation rate of molten InxGa1−xSb, GaSb, and InSb was small at low, and large at high temperature.  相似文献   
9.
Experiments and computations were performed over an ogive-cylinder body having an lift-to-drag ratio of 16 at a diameter Reynolds number of 29000. The side force on the slender body augments with increasing angles of attack for the case without a ring. This increase was mainly due to the increase in the asymmetry of the existing vortex pair in the wake of the body. Attempts were made to completely reduce the existing side force at the angle of attack ranging from 35° to 45°.Three rectangular cross-sectioned circumferential rings having a height of 3% of the local diameter were placed at axial distances of 2.5, 3.5 and 4.5 times the base diameter from the tip of the body so as to reduce the side force. The results obtained indicate that inclusion of three rings completely alleviated the side force on the slender body at the angle of attack ranging from 0° to 45°. The presence of rings was found to alter the growth of the vortices that helped in the reduction of the side force. Computations performed were in reasonable agreement with the experiments.  相似文献   
10.
The underlying study investigates single valued neutrosophic entropy based adaptive sensitive frequency band selection for variational mode decomposition(VMD) for the purpose of identifying defective components in an axial pump. The proposed methodology is applied in the following steps. First, VMD is applied for decomposing vibration signals into various frequency bands, called as modes. After computing energy of each VMD, the lower(minimum) and upper(maximum) bounds from these energy readings ...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号