首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 528 毫秒
1.
The distribution of the solar cosmic radiation flux over the earth is not uniform, but the result of complex phenomena involving the interplanetary magnetic field, the geomagnetic field and latitude and longitude of locations on the earth. The latitude effect relates to the geomagnetic shield; the longitude effect relates to local time. For anisotropic solar cosmic ray events the maximum particle flux is always along the interplanetary magnetic field direction, sometimes called the Archimedean spiral path from the sun to the earth. During anisotropic solar cosmic ray event, the locations on the earth viewing "sunward" into the interplanetary magnetic field direction will observe the largest flux (when adjustments are made for the magnetic latitude effect). To relate this phenomena to aircraft routes, for anisotropic solar cosmic ray events that occur during "normal quiescent" conditions, the maximum solar cosmic ray flux (and corresponding solar particle radiation dose) will be observed in the dawn quadrant, ideally at about 06 hours local time.  相似文献   

2.
During extreme solar events such as big flares or/and energetic coronal mass ejections (CMEs) high energy particles are accelerated by the shocks formed in front of fast interplanetary coronal mass ejections (ICMEs). The ICMEs (and their sheaths) also give rise to large geomagnetic storms which have significant effects on the Earth’s environment and human life. Around 14 solar cosmic ray ground level enhancement (GLE) events in solar cycle 23 we examined the cosmic ray variation, solar wind speed, ions density, interplanetary magnetic field, and geomagnetic disturbance storm time index (Dst). We found that all but one of GLEs are always followed by a geomagnetic storm with Dst  −50 nT within 1–5 days later. Most(10/14) geomagnetic storms have Dst index  −100  nT therefore generally belong to strong geomagnetic storms. This suggests that GLE event prediction of geomagnetic storms is 93% for moderate storms and 71% for large storms when geomagnetic storms preceded by GLEs. All Dst depressions are associated with cosmic ray decreases which occur nearly simultaneously with geomagnetic storms. We also investigated the interplanetary plasma features. Most geomagnetic storm correspond significant periods of southward Bz and in close to 80% of the cases that the Bz was first northward then turning southward after storm sudden commencement (SSC). Plasma flow speed, ion number density and interplanetary plasma temperature near 1 AU also have a peak at interplanetary shock arrival. Solar cause and energetic particle signatures of large geomagnetic storms and a possible prediction scheme are discussed.  相似文献   

3.
4.
We demonstrate that the general features of the radial and azimuthal components of the anisotropy of galactic cosmic rays can be studied by the harmonic analysis method using data from an individual neutron monitor with cut off rigidity <5 GV. In particular, we study the characteristics of the 27-day (solar rotation period) variations of the galactic cosmic ray intensity and anisotropy, solar wind velocity, interplanetary magnetic field strength and sunspot number. The amplitudes of the 27-day variations of the galactic cosmic ray anisotropy are greater, and the phases more clearly established, in A > 0 polarity periods than in A < 0 polarity periods at times of minimum solar activity. The phases of the 27-day variations of the galactic cosmic rays intensity and anisotropy are opposite with respect to the similar changes of the solar wind velocity in A > 0 polarity periods. No significant dependence of the amplitude of the 27-day variation of the galactic cosmic ray anisotropy on the tilt angle of the heliospheric neutral sheet is found. Daily epicyclegrams obtained by Chree’s method show that the 27-day variations of the galactic cosmic ray anisotropy during A > 0 polarity periods follow elliptical paths with the major axes oriented approximately along the interplanetary magnetic field. The paths are more irregular during A < 0 polarity periods.  相似文献   

5.
Statistical analyses of the influence of Solar and geomagnetic activity, sector structure of the interplanetary magnetic field and galactic cosmic ray Forbush effects on car accident events in Poland for the period of 1990-1999 have been carried out. Using auto-correlation, cross-correlation, spectral analyses and superposition epochs methods it has been shown that there are separate periods when car accident events have direct correlation with Ap index of the geomagnetic activity, sector structure of the interplanetary magnetic field and Forbush decreases of galactic cosmic rays. Nevertheless, the single-valued direct correlation is not possible to reveal for the whole period of 1990-1999. Periodicity of 7 days and its second harmonic (3.5 days) has been reliably revealed in the car accident events data in Poland for the each year of the period 1990-1999. It is shown that the maximum car accident events take place in Poland on Friday and practically does not depend on the level of solar and geomagnetic activities.  相似文献   

6.
强磁场扰动对宇宙线调制的统计研究   总被引:5,自引:2,他引:3  
对1978─1982太阳活动高年时发生的激波、强磁场扰动及激波与强磁场扰动共存这三类事件引起的宇宙线变化进行了统计研究,得到如下结果:(1)激波与强磁场扰动共存时引起的宇宙线强度下降最为显着;只有激波或强磁场扰动时,宇宙线的强度变化相对较小;(2)标志速度间断的激波是产生宇宙线Forbush下降的重要因素;(3)速度间断在强磁场扰动对宇宙线的调制中可能起一个触发的作用。   相似文献   

7.
We have studied conditions in interplanetary space, which can have an influence on galactic cosmic ray (CR) and climate change. In this connection the solar wind and interplanetary magnetic field parameters and cosmic ray variations have been compared with geomagnetic activity represented by the equatorial Dst index from the beginning 1965 to the end of 2012. Dst index is commonly used as the solar wind–magnetosphere–ionosphere interaction characteristic. The important drivers in interplanetary medium which have effect on cosmic rays as CMEs (coronal mass ejections) and CIRs (corotating interaction regions) undergo very strong changes during their propagation to the Earth. Because of this CMEs, coronal holes and the solar spot numbers (SSN) do not adequately reflect peculiarities concerned with the solar wind arrival to 1 AU. Therefore, the geomagnetic indices have some inestimable advantage as continuous series other the irregular solar wind measurements. We have compared the yearly average variations of Dst index and the solar wind parameters with cosmic ray data from Moscow, Climax, and Haleakala neutron monitors during the solar cycles 20–23. The descending phases of these solar cycles (CSs) had the long-lasting solar wind high speed streams occurred frequently and were the primary contributors to the recurrent Dst variations. They also had effects on cosmic rays variations. We show that long-term Dst variations in these solar cycles were correlated with the cosmic ray count rate and can be used for study of CR variations. Global temperature variations in connection with evolution of Dst index and CR variations is discussed.  相似文献   

8.
Observed galactic cosmic ray intensity can be subjected to a transient decrease. These so-called Forbush decreases are driven by coronal mass ejection induced shockwaves in the heliosphere. By combining in situ measurements by space borne instruments with ground-based cosmic ray observations, we investigate the relationship between solar energetic particle flux, various solar activity indices, and intensity measurements of cosmic rays during such an event. We present cross-correlation study done using proton flux data from the SOHO/ERNE instrument, as well as data collected during some of the strongest Forbush decreases over the last two completed solar cycles by the network of neutron monitor detectors and different solar observatories. We have demonstrated connection between the shape of solar energetic particles fluence spectra and selected coronal mass ejection and Forbush decrease parameters, indicating that power exponents used to model these fluence spectra could be valuable new parameters in similar analysis of mentioned phenomena. They appear to be better predictor variables of Forbush decrease magnitude in interplanetary magnetic field than coronal mass ejection velocities.  相似文献   

9.
One of the greatest and most famous increase of solar cosmic rays over the neutron monitor epoch is the ground level enhancement in 1956. All future proton events are inevitable when compared with this one and therefore it is necessary to provide the efficiency of such a comparison derived from the existing data. In this paper, we return to the analysis of ground level observations on 23 February 1956 in order to model more precisely the solar cosmic ray behaviour. The extremely high magnitude of this effect allowed various spectral characteristics of solar cosmic rays, their anisotropy, differential and integral proton fluxes, and angular distribution of the source of solar particle anisotropy to be obtained with sufficient accuracy on the basis of available data from 13 neutron monitors. The most outstanding feature of this event was a narrow and extremely intensive beam of ultra relativistic particles arriving at Earth at the beginning of the event. This unique beam was not long and its width did not exceed 30–40°, thus, its contribution to solar particle density was not significant. Many features of this GLE are apparently explained by the peculiarity of particle interplanetary propagation from a remote (limb or behind of limb) source.  相似文献   

10.
Fluctuations of cosmic rays and interplanetary magnetic field upstream of interplanetary shocks are studied using data of ground-based polar neutron monitors as well as measurements of energetic particles and solar wind plasma parameters aboard the ACE spacecraft. It is shown that coherent cosmic ray fluctuations in the energy range from 10 keV to 1 GeV are often observed at the Earth’s orbit before the arrival of interplanetary shocks. This corresponds to an increase of solar wind turbulence level by more than the order of magnitude upstream of the shock. We suggest a scenario where the cosmic ray fluctuation spectrum is modulated by fast magnetosonic waves generated by flux of low-energy cosmic rays which are reflected and/or accelerated by an interplanetary shock.  相似文献   

11.
During the recent ground level enhancement of 13 December 2006, also known as GLE70, solar cosmic ray particles of energy bigger that ∼500 MeV/nucleon propagated inside the Earth’s magnetosphere and finally accessed low-altitude satellites and ground level neutron monitors. The magnitude and the characteristics of this event registered at different neutron monitor stations of the worldwide network can be interpreted adequately on the basis of an estimation of the solar particle trajectories in the near Earth interplanetary space. In this work, an extended representation of the Earth’s magnetic field was realized applying the Tsyganenko 1989 model. Using a numerical back-tracing technique the solar proton trajectories inside the magnetospheric field of the Earth were calculated for a variety of particles, initializing their travel at different locations, covering a wide range of energies. In this way, the asymptotic directions of viewing were calculated for a significant number of neutron monitor stations, providing crucial information on the Earth’s “magnetospheric optics” for primary solar cosmic rays, on the top of the atmosphere, during the big solar event of December 2006. The neutron monitor network has been treated, therefore, as a multidimensional tool that gives insights into the arrival directions of solar cosmic ray particles as well as their spatial and energy distributions during extreme solar events.  相似文献   

12.
We consider regular motion of 50 – 200 GV particles in a large-scale interplanetary magnetic field model which contains a wavy neutral sheet responsible for the sector-structure. Numerical calculations based upon energy losses along various trajectories are carried out to obtain the predicted omni-directional density and anisotropy of cosmic rays at various solar latitudes. A marked difference is found between odd and even solar cycles. The post-1969 field configuration gives small radial and large latitudinal gradient: cosmic ray density increases toward the poles. The latitudinal gradient turns out smaller and of opposite sense for the pre-1969 epoch. Anisotropy changes dramatically as we move off the solar equator: corotation appears to be restricted to low latitudes.  相似文献   

13.
A new water-Cherenkov radiation detector, located at the Argentine Marambio Antarctic Base (64.24S-56.62 W), has been monitoring the variability of galactic cosmic ray (GCR) flux since 2019. One of the main aims is to provide experimental data necessary to study interplanetary transport of GCRs during transient events at different space/time scales. In this paper we present the detector and analyze observations made during one full year. After the analysis and correction of the GCR flux variability due to the atmospheric conditions (pressure and temperature), a study of the periodicities is performed in order to analyze modulations due to heliospheric phenomena. We can observe two periods: (a) 1 day, associated with the Earth’s rotation combined with the spatial anisotropy of the GCR flux; and (b) 30 days due to solar impact of stable solar structures combined with the rotation of the Sun. From a superposed epoch analysis, and considering the geomagnetic effects, the mean diurnal amplitude is 0.08% and the maximum flux is observed in 15 h local time (LT) direction in the interplanetary space. In such a way, we determine the capability of Neurus to observe anisotropies and other interplanetary modulations on the GCR flux arriving at the Earth.  相似文献   

14.
The cosmic ray ionization source functions which were obtained using a simplified extensive air shower model are used to calculate the eleven year cycle, seasonal and diurnal variations of ionization rate in the low and middle atmosphere. The ionization source function, as a function of the penetrating depth and the energy of cosmic ray particles, is the ionization rate per unit depth for a unit flux of incoming cosmic ray particles with certain energy.The calculation of the eleven year cycle variation of ionization rate in the low and middle atmosphere due to the modulation of galactic cosmic ray intensity by solar activity shows that the amplitude is larger at a higher magnetic latitude and is generally larger at higher altitudes. The relative amplitude of fluctuation of the ionization peak value (at altitudes near 15 km) is up to 45% in the magnetic polar region. The ionization rate, due to the seasonal variation of the atmospheric density, varies from several per cent below the ionization peak to several tens per cent above the peak. This seasonal variation of ionization rate reaches 35% at 70 km. The diurnal variation of atmospheric densities caused by atmospheric tidal oscillation can produce a diurnal variation of the ionization rate to an amplitude of several per cent at altitudes above 40 km. The diurnal oscillation is less than 1% below 35 km.  相似文献   

15.
The Athens Neutron Monitor Data Processing (ANMODAP) Center recorded an unusual Forbush decrease with a sharp enhancement of cosmic ray intensity right after the main phase of the Forbush decrease on 16 July 2005, followed by a second decrease within less than 12 h. This exceptional event is neither a ground level enhancement nor a geomagnetic effect in cosmic rays. It rather appears as the effect of a special structure of interplanetary disturbances originating from a group of coronal mass ejections (CMEs) in the 13–14 July 2005 period. The initiation of the CMEs was accompanied by type IV radio bursts and intense solar flares (SFs) on the west solar limb (AR 786); this group of energetic phenomena appears under the label of Solar Extreme Events of July 2005. We study the characteristics of these events using combined data from Earth (the ARTEMIS IV radioheliograph, the Athens Neutron Monitor (ANMODAP)), space (WIND/WAVES) and data archives. We propose an interpretation of the unusual Forbush profile in terms of a magnetic structure and a succession of interplanetary shocks interacting with the magnetosphere.  相似文献   

16.
Several years ago, the anisotropic diffusion and convective transport accompanied by adiabatic deceleration were considered as the principal means for cosmic ray propagation. Particles of relatively small energies (~ 1 MeV) can propagate along the force lines of the magnetic field without scattering at distances of several astronomical units in the quiet heliosphere. The theory describing the 11-year variation of galactic cosmic ray intensity and the propagation of solar cosmic rays was founded on this basis. However, the anomalies of the 11-year variation of galactic cosmic ray intensity in 1969–1971 revealed the necessity to take into account the influence of the general electromagnetic field of the heliosphere giving rise to a rapid magnetic drift of particles. The particles drift either from the magnetic axis to the ecliptic plane (in the cycle of 1969–1980) or in the opposite direction depending on the sign of the general magnetic field of the sun. The neutral layers along which the drift velocity is comparable to the particle velocity is of great significance. However, in the presence of sector structure, the time of particle propagation along the neutral layer from the boundary of the modulation region to the earth orbit is substantially increased. Thus a marked adiabatic deceleration is here possible. The time delay observed in the recovery of proton intensities at various energies can be explained in terms of a transient phase of the interplanetary field following the polarity reversal.  相似文献   

17.
Data of galactic cosmic rays, solar and geomagnetic activities and solar wind parameters on the one side and car accident events (CAE) in Poland on the other have been analyzed in order to reveal the statistical relationships among them for the period of 1990-2001. Cross correlation and cross spectrum of the galactic cosmic ray intensity, the solar wind (SW) velocity, Kp index of geomagnetic activity and CAE in Poland have been carried out. It is shown that in some epochs of the above-mentioned period there is found a reliable relationship between CAE and solar and geomagnetic activities parameters in the range of the different periodicities, especially, 7 days. The periodicity of 7 days revealed in the data of the CAE has the maximum on Friday without any exception for the minimum and maximum epochs of solar activity. However, the periodicity of 7 days is reliably revealed in other parameters characterizing galactic cosmic rays, SW, solar and geomagnetic activities, especially for the minimum epoch of solar activity. The periodicity of 3.5 days found in the series of CAE data more or less can be completely ascribed to the social effects, while the periodicity of 7 days can be ascribed to the social effect or/to the processes on the Sun, in the interplanetary space and in the Earth's magnetosphere and atmosphere.  相似文献   

18.
There is an increasing amount of evidence linking biological effects to solar and geomagnetic disturbances. A series of studies is published referring to the changes in human physiological responses at different levels of geomagnetic activity. In this study, the possible relation between the daily variations of cosmic ray intensity, measured by the Neutron Monitor at the Cosmic Ray Station of the University of Athens (http://cosray.phys.uoa.gr) and the average daily and hourly heart rate variations of persons, with no symptoms or hospital admission, monitored by Holter electrocardiogram, is considered. This work refers to a group of persons admitted to the cardiological clinic of the KAT Hospital in Athens during the time period from 4th to 24th December 2006 that is characterized by extreme solar and geomagnetic activity. A series of Forbush decreases started on 6th December and lasted until the end of the month and a great solar proton event causing a Ground Level Enhancement (GLE) of the cosmic ray intensity on 13th December occurred. A sudden decrease of the cosmic ray intensity on 15th December, when a geomagnetic storm was registered, was also recorded in Athens Neutron Monitor station (cut-off rigidity 8.53 GV) with amplitude of 4%. It is noticed that during geomagnetically quiet days the heart rate and the cosmic ray intensity variations are positively correlated. When intense cosmic ray variations, like Forbush decreases and relativistic proton events produced by strong solar phenomena occur, cosmic ray intensity and heart rate get minimum values and their variations, also, coincide. During these events the correlation coefficient of these two parameters changes and follows the behavior of the cosmic ray intensity variations. This is only a small part of an extended investigation, which has begun using data from the year 2002 and is still in progress.  相似文献   

19.
简单强磁云的结构特征   总被引:1,自引:1,他引:0  
本文讨论了1980年12月19日和3月19日两次无大型共转流相联系的行星际简单强磁云事件的磁流体动力学结构特征。此两磁云均以高温、高密度的湍流结构为先导,接着是低温、低密度,磁场很强且倾角单调旋转的磁云本体,后随另一密度稍高的结构。磁云本体内Alfvén波速及磁压对动能密度和热压的比值异常地增高,有利于磁云后的扰动迅速穿越磁云向前传播并向前边界集结。磁云边界上的巨大磁压梯度力及MHD波动在高密度结构内的耗散有可能对磁云前的太阳风进行加速和加热,形成双锯齿流速图象。简单磁云的结构很象典型的日冕质量抛射事件。此外,还简要地分析了磁云引起的地磁暴和宇宙线下降。   相似文献   

20.
本文求解了点源爆炸波在环形磁场中传播的非自型问题。以耀斑引起的击波传播为例讨论了解的应用。从中可以看到,磁场扰动呈U形,主要发生在0.5Re—1.0Re的击波区域;行星际磁场的存在使击波到达1AU的时间延长了几个小时;击波必须具有大于磁截止能量EM1S2/4π J0R时(符号意义见内容)才有可能传播到1AU以远的地方,日冕磁场结构对耀斑击波进入行星际空间的传播有重要作用。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号