首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
航空   14篇
航天技术   2篇
航天   1篇
  2016年   1篇
  2011年   1篇
  2009年   1篇
  2007年   2篇
  2003年   2篇
  2001年   1篇
  2000年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1985年   2篇
  1981年   3篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
Pollock  C.J.  C:son-Brandt  P.  Burch  J.L.  Henderson  M.G.  Jahn  J.-M.  McComas  D.J.  Mende  S.B.  Mitchell  D.G.  Reeves  G.D.  Scime  E.E.  Skoug  R.M.  Thomsen  M.  Valek  P. 《Space Science Reviews》2003,109(1-4):155-182
Energetic Neutral Atom (ENA) imaging has contributed substantially to substorm research. This technique has allowed significant advances in areas such as observation and quantification of injected particle drift as a function of energy, observation of dynamics in the tail that are directly related to the effects of imposed (growth phase) and induced (expansion phase) electric fields on the plasma, the prompt extraction of oxygen from the ionosphere during substorms, the relationship between storms and substorms, and the timing of substorm ENA signatures. We present discussion of the advantages and shortcomings of the ENA technique for studying space plasmas. Although the technique is in its infancy, it is yielding results that enrich our understanding of the substorm process and its effects.  相似文献   
2.
Data from ARCS rocket ion beam injection experiments will be primarily discussed in this paper. There are three results from this series of active experiments that are of particular interest in space plasma physics. These are the transverse acceleration of ambient ions in the large beam volume, the scattering of beam ions near the release payload, and the possible acceleration of electrons very close to the plasma generator which produce intense high frequency waves. The ability of 100 ma ion beam injections into the upper E and F regions of the ionosphere to produce these phenomena appear to be related solely to the process by which the plasma release payload and the ion beam are neutralized. Since the electrons in the plasma release do not convect with the plasma ions, the neutralization of both the payload and beam must be accomplished by large field-aligned currents (milliamperes/square meter) which are very unstable to wave growth of various modes. Future work will concentrate on the wave production and wave-particle interactions that produce the plasma/energetic particle effects discussed in this paper and which have direct application to natural phenomena in the upper ionosphere and magnetosphere.  相似文献   
3.
4.
The discovery of terrestrial O+ and other heavy ions in magnetospheric hot plasmas, combined with the association of energetic ionospheric outflows with geomagnetic activity, led to the conclusion that increasing geomagnetic activity is responsible for filling the magnetosphere with ionospheric plasma. Recently it has been discovered that a major source of ionospheric heavy ion plasma outflow is responsive to the earliest impact of coronal mass ejecta upon the dayside ionosphere. Thus a large increase in ionospheric outflows begins promptly during the initial phase of geomagnetic storms, and is already present during the main phase development of such storms. We hypothesize that enhancement of the internal source of plasma actually supports the transition from substorm enhancements of aurora to storm-time ring current development in the inner magnetosphere. Other planets known to have ring current-like plasmas also have substantial internal sources of plasma, notably Jupiter and Saturn. One planet having a small magnetosphere, but very little internal source of plasma, is Mercury. Observations suggest that Mercury has substorms, but are ambiguous with regard to the possibility of magnetic storms of the planet. The Messenger mission to Mercury should provide an interesting test of our hypothesis. Mercury should support at most a modest ring current if its internal plasma source is as small as is currently believed. If substantiated, this hypothesis would support a general conclusion that the magnetospheric inflationary response is a characteristic of magnetospheres with substantial internal plasma sources. We quantitatively define this hypothesis and pose it as a problem in comparative magnetospheres.  相似文献   
5.
A spacecraft capable of producing higher-than-natural electrostatic charges may achieve propellantless orbital maneuvering via the Lorentz-force interaction with a planetary magnetic field. Development of maneuver strategies for these propellantless vehicles is complicated by the fact that the perturbative Lorentz force acts along only a single line of action at any instant. Relative-motion dynamical models are developed that lead to approximate analytical solutions for the motion of charged spacecraft subject to the Lorentz force. These solutions indicate that the principal effects of the Lorentz force on a spacecraft in a circular orbit are to change the intrack position and to change the orbit plane. A rendezvous example is presented in which a spacecraft with a specific charge of ?3.81 × 10?4 C/kg reaches a target vehicle initially 10 km away (on the same equatorial low-Earth orbit) in 1 day. Fly-around maneuvers may be achieved in low-Earth orbit with specific charges on the order of 0.001 C/kg.  相似文献   
6.
Global ena Image Simulations   总被引:2,自引:0,他引:2  
Fok  M.-C.  Moore  T.E.  Wilson  G.R.  Perez  J.D.  Zhang  X.X.  Brandt  P. C:Son  Mitchell  D.G.  Roelof  E.C.  Jahn  J.-M.  Pollock  C.J.  Wolf  R.A. 《Space Science Reviews》2003,109(1-4):77-103
The energetic neutral atom (ENA) images obtained by the ISEE and POLAR satellites pointed the way toward global imaging of the magnetospheric plasmas. The Imager for Magnetopause to Aurora Global Exploration (IMAGE) is the first mission to dedicate multiple neutral atom imagers: HENA, MENA and LENA, to monitor the ion distributions in high-, medium- and low-energy ranges, respectively. Since the start of science operation, HENA, MENA and LENA have been continuously sending down images of the ring current, ionospheric outflow, and magnetosheath enhancements from high pressure solar wind. To unfold multiple-dimensional (equal or greater than 3) plasma distributions from 2-dimensional images is not a trivial task. Comparison with simulated ENA images from a modeled ion distribution provides an important basis for interpretation of features in the observed images. Another approach is to develop image inversion methods to extract ion information from ENA images. Simulation studies have successfully reproduced and explained energetic ion drift dynamics, the transition from open to closed drift paths, and the magnetosheath response to extreme solar wind conditions. On the other hand, HENA has observed storm-time ion enhancement on the nightside toward dawn that differs from simple concepts but can be explained using more sophisticated models. LENA images from perigee passes reveal unexpected characteristics that now can be interpreted as evidence for a transient superthermal exospheric component that is gravitationally-influenced if not bound. In this paper, we will report ENA simulations performed during several IMAGE observed events. These simulations provide insight and explanations to the ENA features that were not readily understandable previously.  相似文献   
7.
The Einstein Observatory showed that Wolf-Rayet stars have a much larger range in the ratio of X-ray to bolometric luminosity than normal early-type stars. EXOSAT measurements of HD193T93 (WCT+abs) show it to be extremely X-ray bright. This result is probably not connected with the infra-red and radio outburst that the star underwent in 1977. Other Einstein X-ray sources which are probably identified with Wolf-Rayet stars are newly reported.  相似文献   
8.
The ion and electron sensor (IES) is part of the Rosetta Plasma Consortium (RPC). The IES consists of two electrostatic plasma analyzers, one each for ions and electrons, which share a common entrance aperture. Each analyzer covers an energy/charge range from 1 eV/e to 22 keV/e with a resolution of 4%. Electrostatic deflection is used at the entrance aperture to achieve a field of view of 90°× 360° (2.8π sr). Angular resolution is 5°× 22.5° for electrons and 5°× 45° for ions with the sector containing the solar wind being further segmented to 5°× 5°. The three-dimensional plasma distributions obtained by IES will be used to investigate the interaction of the solar wind with asteroids Steins and Lutetia and the coma and nucleus of comet 67P/Churyumov–Gerasimenko (CG). In addition, photoelectron spectra obtained at these bodies will help determine their composition.  相似文献   
9.
The Thermal Ion Dynamics Experiment (TIDE) and the Plasma Source Instrument (PSI) have been developed in response to the requirements of the ISTP Program for three-dimensional (3D) plasma composition measurements capable of tracking the circulation of low-energy (0–500 eV) plasma through the polar magnetosphere. This plasma is composed of penetrating magnetosheath and escaping ionospheric components. It is in part lost to the downstream solar wind and in part recirculated within the magnetosphere, participating in the formation of the diamagnetic hot plasma sheet and ring current plasma populations. Significant obstacles which have previously made this task impossible include the low density and energy of the outflowing ionospheric plasma plume and the positive spacecraft floating potentials which exclude the lowest-energy plasma from detection on ordinary spacecraft. Based on a unique combination of focusing electrostatic ion optics and time of flight detection and mass analysis, TIDE provides the sensitivity (seven apertures of 1 cm2 effective area each) and angular resolution (6°×18°) required for this purpose. PSI produces a low energy plasma locally at the POLAR spacecraft that provides the ion current required to balance the photoelectron current, along with a low temperature electron population, regulating the spacecraft potential slightly positive relative to the space plasma. TIDE/PSI will: (a) measure the density and flow fields of the solar and terrestrial plasmas within the high polar cap and magnetospheric lobes; (b) quantify the extent to which ionospheric and solar ions are recirculated within the distant magnetotail neutral sheet or lost to the distant tail and solar wind; (c) investigate the mass-dependent degree energization of these plasmas by measuring their thermodynamic properties; (d) investigate the relative roles of ionosphere and solar wind as sources of plasma to the plasma sheet and ring current.Deceased.  相似文献   
10.
The Rosetta Plasma Consortium (RPC) will make in-situ measurements of the plasma environment of comet 67P/Churyumov-Gerasimenko. The consortium will provide the complementary data sets necessary for an understanding of the plasma processes in the inner coma, and the structure and evolution of the coma with the increasing cometary activity. Five sensors have been selected to achieve this: the Ion and Electron Sensor (IES), the Ion Composition Analyser (ICA), the Langmuir Probe (LAP), the Mutual Impedance Probe (MIP) and the Magnetometer (MAG). The sensors interface to the spacecraft through the Plasma Interface Unit (PIU). The consortium approach allows for scientific, technical and operational coordination, and makes optimum use of the available mass and power resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号