首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   0篇
航空   149篇
航天技术   8篇
航天   34篇
  2019年   1篇
  2018年   66篇
  2017年   37篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   19篇
  2010年   8篇
  2009年   4篇
  2008年   4篇
  2007年   9篇
  2006年   1篇
  2005年   3篇
  2004年   7篇
  2003年   3篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1998年   2篇
  1993年   4篇
  1992年   3篇
  1987年   2篇
  1977年   1篇
排序方式: 共有191条查询结果,搜索用时 359 毫秒
1.
The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the Universe) and others of which there are always many, like meteors and molecules, black holes and binaries.  相似文献   
2.
Emergence of a Habitable Planet   总被引:2,自引:0,他引:2  
We address the first several hundred million years of Earth’s history. The Moon-forming impact left Earth enveloped in a hot silicate atmosphere that cooled and condensed over ∼1,000 yrs. As it cooled the Earth degassed its volatiles into the atmosphere. It took another ∼2 Myrs for the magma ocean to freeze at the surface. The cooling rate was determined by atmospheric thermal blanketing. Tidal heating by the new Moon was a major energy source to the magma ocean. After the mantle solidified geothermal heat became climatologically insignificant, which allowed the steam atmosphere to condense, and left behind a ∼100 bar, ∼500 K CO2 atmosphere. Thereafter cooling was governed by how quickly CO2 was removed from the atmosphere. If subduction were efficient this could have taken as little as 10 million years. In this case the faint young Sun suggests that a lifeless Earth should have been cold and its oceans white with ice. But if carbonate subduction were inefficient the CO2 would have mostly stayed in the atmosphere, which would have kept the surface near ∼500 K for many tens of millions of years. Hydrous minerals are harder to subduct than carbonates and there is a good chance that the Hadean mantle was dry. Hadean heat flow was locally high enough to ensure that any ice cover would have been thin (<5 m) in places. Moreover hundreds or thousands of asteroid impacts would have been big enough to melt the ice triggering brief impact summers. We suggest that plate tectonics as it works now was inadequate to handle typical Hadean heat flows of 0.2–0.5 W/m2. In its place we hypothesize a convecting mantle capped by a ∼100 km deep basaltic mush that was relatively permeable to heat flow. Recycling and distillation of hydrous basalts produced granitic rocks very early, which is consistent with preserved >4 Ga detrital zircons. If carbonates in oceanic crust subducted as quickly as they formed, Earth could have been habitable as early as 10–20 Myrs after the Moon-forming impact.  相似文献   
3.
A strategy is being developed whereby the current set of internationally standardized space data communications protocols can be incrementally evolved so that a first version of an operational "Interplanetary Internet" is feasible by the end of the decade. This paper describes its architectural concepts, discusses the current set of standard space data communications capabilities that exist to support Mars exploration and reviews proposed new developments. We also speculate that these current capabilities can grow to support future scenarios where human intelligence is widely distributed across the Solar System and day-to-day communications dialog between planets is routine.  相似文献   
4.
Kevin Madders  Jan Wouters   《Space Policy》2003,19(1):155-46
Despite some impressive programmes, Europe has not yet succeeded in forging a coherent space policy and, as a result, has not achieved its full potential in this field. As efforts to formulate a more comprehensive policy intensify, a series of workshops has been initiated in order to provide an independent platform, allowing broad participation, for discussion of the issues. This article describes the rationale behind the process and the structure of the workshops and reports on the highlights of the first workshop, examining the fundamental questions involved. The themes of forthcoming workshops are also presented.  相似文献   
5.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
6.
7.
Very Long Baseline Interferometry (VLBI) is a differential technique observing radiation of compact extra-galactic radio sources with pairs of radio telescopes. For these observations, the frequency standards at the telescopes need to have very high stability. In this article we discuss why this is, and we investigate exactly how precise the frequency standards need to be. Four areas where good clock performance is needed are considered: coherence, geodetic parameter estimation, correlator synchronization, and UT1 determination. We show that in order to ensure the highest accuracy of VLBI, stability similar to that of a hydrogen maser is needed for time-scales up to a few hours. In the article, we are considering both traditional VLBI where extra-galactic radio sources are observed, as well as observation of man-made artificial radio sources emitted by satellites or spacecrafts.  相似文献   
8.
The HP3 instrument on the InSight lander mission will measure subsurface temperatures and thermal conductivities from which heat flow in the upper few meters of the regolith at the landing site will be calculated. The parameter to be determined is steady-state conductive heat flow, but temperatures may have transient perturbations resulting from surface temperature changes and there could be a component of thermal convection associated with heat transport by vertical flow of atmospheric gases over the depth interval of measurement. The experiment is designed so that it should penetrate to a depth below which surface temperature perturbations are smaller than the required measurement precision by the time the measurements are made. However, if the measurements are delayed after landing, and/or the probe does not penetrate to the desired depth, corrections may be necessary for the transient perturbations. Thermal convection is calculated to be negligible, but these calculations are based on unknown physical properties of the Mars regolith. The effects of thermal convection should be apparent at shallow depths where transient thermal perturbations would be observed to deviate from conductive theory. These calculations were required during proposal review and their probability of predicting a successful measurement a prerequisite for mission approval. However, their uncertainties lies in unmeasured physical parameters of the Mars regolith.  相似文献   
9.
Using the Earth albedo model and the orbital dynamics model developed as part of the First Look Project (Fast Initial In-Orbit Identification of Scientific Satellites) the terrestrial albedo is evaluated considering the orbits of some scientific missions as Gravity Probe B, MICROSCOPE and STEP. The model of the Earth albedo is based on the reflectivity data measured by NASA’s Earth Probe satellite, which is part of the TOMS project (Total Ozone Mapping Spectrometer). The reflectivity data are available daily, on line at the TOMS website, and they fluctuate because of changes in clouds and ice coverage and seasonal changes. The data resolution partitions the Earth surface into a number of cells. The incident irradiance on each cell is used to calculate total radiant flux from the cell. With the radiant flux from each cell, the irradiance at the satellite is calculated.  相似文献   
10.
Thermodynamic conditions suggest that clathrates might exist on Mars. Despite observations which show that the dominant condensed phases on the surface of Mars are solid carbon dioxide and water ice, clathrates have been repeatedly proposed to play an important role in the distribution and total inventory of the planet’s volatiles. Here we review the potential consequences of the presence of clathrates on Mars. We investigate how clathrates could be a potential source for the claimed existence of atmospheric methane. In this context, plausible clathrate formation processes, either in the close subsurface or at the base of the cryosphere, are reviewed. Mechanisms that would allow for methane release into the atmosphere from an existing clathrate layer are addressed as well. We also discuss the proposed relationship between clathrate formation/dissociation cycles and how potential seasonal variations influence the atmospheric abundances of argon, krypton and xenon. Moreover, we examine several Martian geomorphologic features that could have been generated by the dissociation of extended subsurface clathrate layers. Finally we investigate the future in situ measurements, as well as the theoretical and experimental improvements that will be needed to better understand the influence of clathrates on the evolution of Mars and its atmosphere.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号