首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
航空   2篇
航天技术   6篇
航天   4篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2006年   1篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1975年   1篇
排序方式: 共有12条查询结果,搜索用时 497 毫秒
1.
A balloon borne multichannel photometer for measurement of atmospheric scattering in the near ultraviolet and the visible wavelength regions has been developed at the Physical Research Laboratory, Ahmedabad for study of the size distribution and number density of aerosols at tropospheric and lower stratospheric altitudes. The instrumentation involves tracking the sun in elevation and scanning in azimuth. The payload was recently flown on a 100 kg. balloon from the Hyderabad Balloon Facility on 18 April 1984. The balloon reached a float altitude of 35 km and good quality data has been obtained from an altitude of 6 km upto float altitude. Data analysis is still in progress. The present paper details the instrument design and presents a few illustrations of the instrument performance from this flight.  相似文献   
2.
India has established a ‘critical mass’ in terms of EO infrastructure for disaster management. Starting from IRS 1A in 1980s to the most recent CARTOSAT-2, India's EO series of satellites are moving away from the generic to thematic constellations. The series of RESOURCESAT, CARTOSAT, OCEANSAT and forthcoming Radar Imaging Satellite (RISAT) satellites exemplifies the thematic characters of the EO missions. These thematic constellations, characterized with multi-platform, multi-resolution and multi-parameter EO missions, are important assets for disaster reduction. In the more specific term, these constellations in conjunction with contemporary EO missions address the critical observational gaps in terms of capturing the catastrophic events, phenomena or their attributes on real/near real time basis with appropriate spatial and temporal attributes.Using conjunctively the data primarily emanating these thematic constellations and all weather radar data from aerial platform and also from RADARSAT as gap-fillers has been a part of India's EO strategy for disaster management. The infrastructure has been addressing the observational needs in disaster management. The high resolution imaging better than one-meter spatial resolution and also Digital Elevation Models (DEM) emanating from Cartosat series are providing valuable inputs to characterize geo-physical terrain vulnerability. Radar Imaging Satellite, with all weather capability missions, is being configured for disaster management. At present, the current Indian EO satellites cover the whole world every 40 h (with different resolutions and swaths), and the efforts are towards making it better than 24 h. The efforts are on to configure RESOURCESAT 3 with wider swath of 740 km with 23 m spatial resolution and also to have AWiFS type of capability at geo-platform to improve the observational frequencies for disaster monitoring.India's EO infrastructure has responded comprehensively to all the natural disasters the country has faced in the recent times. As a member of International Charter on Space and Major Disasters, India has also been instrumental in promoting the related UN initiatives viz., RESAP of UN ESCAP, SPIDER of UN OOSA, Sentinel Asia of JAXA initiative and also of GEOSS initiative. The paper intends to illustrate India's EO strategy for disaster reduction.  相似文献   
3.
Significant progress has been achieved in India in demonstrating the utility of remote sensing data for various oceanographic applications during the last one decade. Among these, techniques have been developed for retrieval of ocean surface waves, winds, wave forecast model, internal waves, sea surface temperature and chlorophyll pigments. Encouraged from these results as well as for meeting the specific and increasing data requirements on an assured basis by oceanographers, India is making concerted efforts for developing and launching state-of-the-art indigenous satellites for ocean applications in the coming years.

The first in the series of ocean satellites planned for launch is Oceansat-1 (IRS-P4) by early 1999. Oceansat-1 carries on-board an Ocean Colour Monitor (OCM) and a Multi-frequency Scanning Microwave Radiometer (MSMR). OCM will have 8 narrow spectral bands operating in visible and near- infrared bands (402–885 nm) with a spatial resolution of 360 m and swath of 1420 km. The MSMR with its all weather capability is configured to have measurements at 4 frequencies viz., 6.6, 10.65, 18 & 21 GHz in dual polarisation mode with a spatial resolution of 120, 80, 40 & 40 km, respectively with an overall swath of 1360 km. The Oceansat-1 with repetitivity of once in two days will provide global data for retrieval of various oceanographic and meteorological parameters such as chlorophyll (primary productivity), sea surface temperature and wind speed, besides a host of other parameters of relevance to meteorology.

A full fledged satellite for ocean applications known as Oceansat-2 (IRS-P7) is also planned for launch during 2002. This satellite with payload mix of microwave (Scatterometer, Altimeter & Passive Microwave Radiometer), Thermal (TIR) and Optical (OCM) sensors, will provide greater in-sight into the global understanding of ocean dynamics/resources. This mission is expected to provide a complete set of oceanographic measurements, which are useful for providing operational oceanographic services.

Efforts are also on towards development of missions having multi-frequency, multipolarisation and multi-look angle microwave payloads including Synthetic Aperture Radar (SAR) and advanced millimeter wave sounders, besides development of imaging spectrometers by 2005.

A well-knit plan has been initiated in India for utilisation of planned Oceansat data. Important efforts initiated in this direction include SATellite Coastal and Oceanographic Research and Ocean Information Services, which are being carried out on an integrated basis aiming at providing services to the down stream users. The paper highlights these efforts in India towards providing an operational ocean information services in the coming years.  相似文献   

4.
This paper describes a scheme for electronically regulating the flow of propellant to the thruster from a high-pressure storage tank used in spacecraft application. Precise flow delivery of propellant to thrusters ensures propulsion system operation at best efficiency by maximizing the propellant and power utilization for the mission. The proposed field programmable gate array (FPGA) based electronic flow regulator (EFR) is used to ensure precise flow of propellant to the thrusters from a high-pressure storage tank used in spacecraft application. This paper presents hardware and software design of electronic flow regulator and implementation of the regulation logic onto an FPGA.  相似文献   
5.
Measurements have been made of the atmospheric scattering in the ultraviolet (λ = 0.31 μm) during the 16 February 1980 solar eclipse rocket campaign. The amplitude of the scattered fluxes as well as the angular distribution could be measured from ground up to an altitude of about 24 km. The Rayleigh scattering component was estimated using standard atmospheric models and the observations have been used to study the scattering due to aerosols at tropospheric and lower stratospheric altitudes.  相似文献   
6.
We summarize two years of Mesosphere Lower Thermosphere Photometer (MLTP) operation of mesospheric OH and O2 emission monitoring. The deduced mesospheric OH and O2 temperatures show large variability. Nightly temperature variations over Gadanki (13.5°N, 79.2°E) are dominated by the short period wave features, while tidal amplitudes are relatively small. Our measurements are the first to report a long period seasonal variation at two upper mesospheric altitudes simultaneously over the Indian sector. Our observations reveal the presence of a dominant semi-annual oscillation (∼6 months periodicity) together with a shorter period (∼2.5  months periodicity) oscillation in both OH and O2 data.  相似文献   
7.
The general characteristics of middle atmospheric thermal structure have been studied by making use of the Rayleigh lidar data collected over the period of about four years (1998–2001). Here, the data has been used from two different stations in the Indian sub-continent in tropics (Gadanki; 13.5°N, 79.2°E) and in sub-tropics (Mt. Abu; 24.5°N, 72.7°E). The observed monthly mean temperature profiles are compared with different model atmospheres (CIRA-86 and MSISE-90). We observed, the mean temperature profiles have closer agreement with MSISE-90 than CIRA-86. The temperature profiles measured by lidar and HALOE satellite overpass nearby lidar site are generally in agreement with each other. The systematic and statistical errors in deriving temperature are found to be uniform for both the stations, as 1 K at 50 km, 3 K at 60 km and 10 K at 70 km. The special features of mesospheric temperature inversion (MTI) and double stratopause structure (DBS) are also addressed for both the stations.  相似文献   
8.
This program develops and demonstrates technologies useful for implementing a manageable cost effective systems approach to monitoring the medical condition of personnel by way of an instrumented uniform hereafter referred to as a Sensate Liner (SL). The SL consists of a form fitting garment which contains and interconnects sensing elements and devices to an electronics pack containing a processor and transmitter. The SL prototype requires fiber, textile, garment and sensor development. The SL textile consists of a mesh of electrically and optically conductive fibers integrated into the normal structure (woven or knitted) of fibers and yarns selected for comfort and durability. A suite of SL garment compatible embedded biological and physical sensors are then integrated into the SL. The initial SL sensor suite is selected to improve triage for combat casualties. Additional SL sensor concepts for medical monitoring will be discussed.  相似文献   
9.
This correspondence considers the problem of optimally controlling the thrust steering angle of an ion-propelled spaceship so as to effect a minimum time coplanar orbit transfer from the mean orbital distance of Earth to mean Martian and Venusian orbital distances. This problem has been modelled as a free terminal time-optimal control problem with unbounded control variable and with state variable equality constraints at the final time. The problem has been solved by the penalty function approach, using the conjugate gradient algorithm. In general, the optimal solution shows a significant departure from earlier work. In particular, the optimal control in the case of Earth-Mars orbit transfer, during the initial phase of the spaceship's flight, is found to be negative, resulting in the motion of the spaceship within the Earth's orbit for a significant fraction of the total optimized orbit transfer time. Such a feature exhibited by the optimal solution has not been reported at all by earlier investigators of this problem.  相似文献   
10.
The Indian Earth Observations Program, over the past three decades, has been mainly driven by the national need for natural resources management, environment monitoring and disaster support. With an array of seven Indian Earth Observation Satellites, national development support has been provided through a well-knit institutional framework of a National Natural Resources Management System (NNRMS). A wide variety of applications have been developed as an inter-agency effort over the past 15 years. Now, the capacity of the programme has extended into the global arena and is providing operational data services to the global user community. Positioning of relevant policy guidelines for the EO program to contribute to national endeavor and its transitioning for global outreaching and development of a commercial enterprise — both at national and global levels has been an area of constant attention within ISRO.Issues related to defining the space and data acquisition as a national “public ground”, costing of data products and services and evolving a commercial Earth Observation policy have been addressed for providing the overall thrust of the Indian Earth Observations program. The paper discusses the evolution of the policy in the early stages and its transition today to support a two-pronged strategy of supporting national development support and at the same time, developing a commercial program. The paper also illustrates the success of these policy endeavors through specific cases of applications and development of value added services. The paper also brings out the potential policy adjustments that will be called for in the coming years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号