首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   0篇
航空   32篇
航天技术   36篇
航天   11篇
  2021年   3篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   6篇
  2009年   3篇
  2008年   10篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   3篇
  2001年   7篇
  2000年   1篇
  1999年   2篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有79条查询结果,搜索用时 265 毫秒
1.
Lake water height is a key variable in water cycle and climate change studies, which is achievable using satellite altimetry constellation. A method based on data processing of altimetry from several satellites has been developed to interpolate mean lake surface (MLS) over a set of 22 big lakes distributed on the Earth. It has been applied on nadir radar altimeters in Low Resolution Mode (LRM: Jason-3, Saral/AltiKa, CryoSat-2) in Synthetic Aperture Radar (SAR) mode (Sentinel-3A), and in SAR interferometric (SARin) mode (CryoSat-2), and on laser altimetry (ICESat). Validation of the method has been performed using a set of kinematic GPS height profiles from 18 field campaigns over the lake Issykkul, by comparison of altimetry’s height at crossover points for the other lakes and using the laser altimetry on ICESat-2 mission. The precision reached ranges from 3 to 7 cm RMS (Root Mean Square) depending on the lakes. Currently, lake water level inferred from satellite altimetry is provided with respect to an ellipsoid. Ellipsoidal heights are converted into orthométric heights using geoid models interpolated along the satellite tracks. These global geoid models were inferred from geodetic satellite missions coupled with absolute and regional anomaly gravity data sets spread over the Earth. However, the spatial resolution of the current geoid models does not allow capturing short wavelength undulations that may reach decimeters in mountaineering regions or for rift lakes (Baikal, Issykkul, Malawi, Tanganika). We interpolate in this work the geoid height anomalies with three recent geoid models, the EGM2008, XGM2016 and EIGEN-6C4d, and compare them with the Mean Surface of 22 lakes calculated using satellite altimetry. Assuming that MLS mimics the local undulations of the geoid, our study shows that over a large set of lakes (in East Africa, Andean mountain and Central Asia), short wavelength undulations of the geoid in poorly sampled areas can be derived using satellite altimetry. The models used in this study present very similar geographical patterns when compared to MLS. The precision of the models largely depends on the location of the lakes and is about 18 cm, in average over the Earth. MLS can serve as a validation dataset for any future geoid model. It will also be useful for validation of the future mission SWOT (Surface Water and Ocean Topography) which will measure and map water heights over the lakes with a high horizontal resolution of 250 by 250 m.  相似文献   
2.
3.
In the standard control design of powered spacecraft, guidance and attitude control are two independent problems which are attacked separately. As an example of joint guidance and attitude control synthesis, this communication presents the solution to the planar, minimum-time, optimal control problem of a powered spacecraft. The control is determined by a numerical technique based upon the maximum principle. The results provide a display of the various possible maneuver shapes and then provide a guide for a practical definition of closed-loop control laws.  相似文献   
4.
Israel  G.  Cabane  M.  Brun  J-F.  Niemann  H.  Way  S.  Riedler  W.  Steller  M.  Raulin  F.  Coscia  D. 《Space Science Reviews》2002,104(1-4):433-468
ACP's main objective is the chemical analysis of the aerosols in Titan's atmosphere. For this purpose, it will sample the aerosols during descent and prepare the collected matter (by evaporation, pyrolysis and gas products transfer) for analysis by the Huygens Gas Chromatograph Mass Spectrometer (GCMS). A sampling system is required for sampling the aerosols in the 135'32 km and 22'17 km altitude regions of Titan's atmosphere. A pump unit is used to force the gas flow through a filter. In its sampling position, the filter front face extends a few mm beyond the inlet tube. The oven is a pyrolysis furnace where a heating element can heat the filter and hence the sampled aerosols to 250 °C or 600 °C. The oven contains the filter, which has a thimble-like shape (height 28 mm). For transferring effluent gas and pyrolysis products to GCMS, the carrier gas is a labeled nitrogen 15N2, to avoid unwanted secondary reactions with Titan's atmospheric nitrogen. Aeraulic tests under cold temperature conditions were conducted by using a cold gas test system developed by ONERA. The objective of the test was to demonstrate the functional ability of the instrument during the descent of the probe and to understand its thermal behavior, that is to test the performance of all its components, pump unit and mechanisms. In order to validate ACP's scientific performance, pyrolysis tests were conducted at LISA on solid phase material synthesized from experimental simulation. The chromatogram obtained by GCMS analysis shows many organic compounds. Some GC peaks appear clearly from the total mass spectra, with specific ions well identified thanks to the very high sensitivity of the mass spectrometer. The program selected for calibrating the flight model is directly linked to the GCMS calibration plan. In order not to pollute the two flight models with products of solid samples such as tholins, we excluded any direct pyrolysis tests through the ACP oven during the first phase of the calibration. Post probe descent simulation of flight results are planned, using the much representative GCMS and ACP spare models. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
5.
Titan, the largest satellite of Saturn, with a dense atmosphere very rich in organics, and many couplings in the various parts of its "geofluid", is a reference for studying prebiotic chemistry on a planetary scale. New data have been obtained from experiments simulating this organic chemistry (gas and aerosol phases), within the right ranges of temperature and a careful avoiding of any chemical contamination. They show a very good agreement with the observational data, demonstrating for the first time the formation of all the organic species already detected in Titan atmosphere including, at last, C4N2, together with many other species not yet detected in Titan. This strongly suggests the presence of more complex organics in Titan's atmosphere and surface, including high molecular weight polyynes and cyanopolyynes. The NASA-ESA Cassini-Huygens mission has been successfully launched in October 1997. The Cassini spacecraft will reach the Saturn system in 2004 and become an orbiter around Saturn, while the Huygens probe will penetrate into Titan's atmosphere. In situ measurements, in particular from Huygens GC-MS and ACP instruments, will provide a detailed analysis of the organics present in the air, aerosols, and surface. This very ambitious mission should yield much information of crucial importance for our knowledge of the complexity of Titan's chemistry, and, more generally for the field of exobiology.  相似文献   
6.
Raulin  François  Owen  Tobias 《Space Science Reviews》2002,104(1-4):377-394
Exobiology is not only the study of the origin, distribution and evolution of life in the universe, but also of structures — including at the molecular level, and processes — including organic chemical transformations — related to life. In that respect, with its dense nitrogen atmosphere, which includes a noticeable fraction of methane, and the many organic compounds which are present in the gas and aerosols phases, Titan appears to be a planetary object of prime interest for exobiology in the Solar system, allowing the study of chemical organic evolution in a planetary environment over a long time scale. We describe here some aspects of this extraterrestrial organic chemistry which involves many physical and chemical couplings in the different parts of what can be called ‘Titan's geofluid’ (gas phase, aerosol phases and surface solid and maybe liquid phases). The three complementary approaches which can be followed to study such chemistry of exobiological interest are considered. Those are experimental simulations in the laboratory, chemical and photochemical modeling and of course observation, using both remote sensing and in situ measurements, which is an essential approach. The Cassini-Huygens mission, that offers a unique opportunity to study in detail the many aspects of Titan's organic chemistry, is discussed and the many expected exobiological returns from the different instruments of the Cassini orbiter and the Huygens probe are considered. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
7.
We study the simultaneous occurrence of ULF waves observed on board GEOS and at two of its conjugated stations: Husafell (Iceland) and Skibotn (Norway). We try to deduce some properties of the regions in which these waves are generated. The few number of simultaneous observations of pearl events indicates that such structured oscillations can occur only in specific conditions which are not met generally at the geostationary altitude. We introduce a new method for measuring time delays between the satellite and the ground. We show that this time is much higher than it would be expected from a simple extrapolation of measurements done at lower latitudes on structured events.  相似文献   
8.
SIGMA - 3 gas chromatograph on board VEGA 1 and 2 landing probes has been operated successfully in the 60 - 50 km altitude range, providing several in - situ chemical analysis of the gas and the aerosols of Venus cloud layers. Post flight calibration required to derive atmospheric abundancies from gas chromatograms were carried out using the SIGMA - 3 spare model. A Venus atmospheric aerosol simulation chamber was used in which sulfuric acid droplets were generated. Preliminary results of these calibration experiments indicate that the concentration of sulfuric acid in the upper part of the clouds ( 60 to 55 km) is about 1 mg/m3 and suggest that an additional constituant must be present in noticeable amount in the aerosols. From these experiments the mixing ratio upper limits of SO2 is 100 ppmV and of H2S and COS is few 10 ppmV.  相似文献   
9.
Scintillated GPS phase observations are traditionally characterized by the phase scintillation index, derived from specialized GPS receivers usually tracking at 50 Hz. Geodetic quality GPS receivers, on the other hand, are normally tracking at frequencies up to 1 Hz. However, availability of continuously operating geodetic receivers both in time and geographical location are superior to scintillation receiver’s coverage in many parts of the world. This motivates scintillation studies using regional and global geodetic GPS networks. Previous studies have shown the usefulness of GPS estimated total electron content variations for detecting ionospheric irregularities. In this paper, collocated geodetic and scintillation receivers are employed to compare proxy indices derived from geodetic receivers with the phase scintillation index during quiet and moderately disturbed ionospheric conditions. Sensitivity of the phase scintillation indices at high latitude stations to geomagnetic activity is discussed. Global mapping of ionospheric disturbances using proxy indices from real-time 1 Hz GPS stations are also presented.  相似文献   
10.
The measured D/H ratios in interstellar environments and in the solar system are reviewed. The two extreme D/H ratios in solar system water - (720±120)×10−6 in clay minerals and (88±11)×10−6 in chondrules, both from LL3 chondritic meteorites - are interpreted as the result of a progressive isotopic exchange in the solar nebula between deuterium-rich interstellar water and protosolar H2. According to a turbulent model describing the evolution of the nebula (Drouart et al., 1999), water in the solar system cannot be a product of thermal (neutral) reactions occurring in the solar nebula. Taking 720×10−6 as a face value for the isotopic composition of the interstellar water that predates the formation of the solar nebula, numerical simulations show that the water D/H ratio decreases via an isotopic exchange with H2. During the course of this process, a D/H gradient was established in the nebula. This gradient was smoothed with time and the isotopic homogenization of the solar nebula was completed in 106 years, reaching a D/H ratio of 88×10−6. In this model, cometary water should have also suffered a partial isotopic re-equilibration with H2. The isotopic heterogeneity observed in chondrites result from the turbulent mixing of grains, condensed at different epochs and locations in the solar nebula. Recent isotopic determinations of water ice in cold interstellar clouds are in agreement with these chondritic data and their interpretation (Texeira et al., 1999). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号