首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
航空   1篇
航天技术   1篇
  2009年   1篇
  2000年   1篇
排序方式: 共有2条查询结果,搜索用时 62 毫秒
1
1.
The response of the lower and middle atmosphere to variations in solar irradiance typical of those observed to take place over the 11-year activity cycle has been investigated. The effects on radiative heating rates of changing total solar irradiance, solar spectral irradiance and two different assumptions concerning stratospheric ozone have been studied with a radiative transfer code. The response in the stratosphere depends on the changes specified in the ozone distribution which is not well known. A general circulation model (GCM) of the atmosphere up to 0.1 mbar (about 65 km) has been used to study the impacts of these changes on the thermodynamical structure. The results in the troposphere are very similar to those reported by Haigh99 using a quite different GCM. In the middle atmosphere the model is able to reproduce quite well the observed seasonal evolution of temperature and wind anomalies. Calculations of radiative forcing due to solar variation are presented. These show that the thermal infrared component of the forcing, due to warming of the stratosphere, is important but suggest a near balance between the longwave and shortwave effects of the increased ozone so that ozone change may not be important for net radiative forcing. However, the structure of the ozone change does affect the detailed temperature response and the spectral composition of the radiation entering the troposphere.  相似文献   
2.
Merging time series of ocean color-derived products provided by independent satellite missions supports related biogeochemical and environmental applications by combining temporally overlapping data sets and by increasing data coverage. The creation of a merged series of normalized water leaving radiances LWNLWN, the primary ocean color product, is presented for the Mediterranean Sea using the SeaWiFS and MODIS data records. The merging relies on an optically-based technique that combines the available LWNLWN signal in a spectrally consistent way. Validation statistics indicate uncertainties associated with the merged LWNLWN decreasing from 23% at 412 nm to 12% in the 500- to 555-nm spectral range. The inter-comparison of the sensor-specific products, conducted at the scale of the basin for daily-to-monthly time scales, indicates an overall consistency. The level of differences varies with the wavelength considered and shows a marked seasonal cycle, with differences that tend to be higher in winter. The merged series is remarkably consistent with the sensor-specific data, with average absolute percent differences lower than 10% for all wavelengths below 555 nm. The benefit of merging in terms of sampling frequency over the basin is also illustrated. A merged series of LWNLWN data based on the two considered missions provides valid data over 36% of the basin area on a daily basis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号