首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
航空   9篇
航天技术   5篇
航天   7篇
  2021年   1篇
  2014年   1篇
  2011年   1篇
  2010年   2篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1995年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1974年   1篇
  1967年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
1.
Many bodies in the outer Solar System display the presence of low albedo materials. These materials, evident on the surface of asteroids, comets, Kuiper Belt objects and their intermediate evolutionary step, Centaurs, are related to macromolecular carbon bearing materials such as polycyclic aromatic hydrocarbons and organic materials such as methanol and related light hydrocarbons, embedded in a dark, refractory, photoprocessed matrix. Many planetary rings and satellites around the outer gaseous planets display such component materials. One example, Saturn's largest satellite, Titan, whose atmosphere is comprised of around 90% molecular nitrogen N2 and less than 10% methane CH4, displays this kind of low reflectivity material in its atmospheric haze. These materials were first recorded during the Voyager 1 and 2 flybys of Titan and showed up as an optically thick pinkish orange haze layer. These materials are broadly classified into a chemical group whose laboratory analogs are termed "tholins", after the Greek word for "muddy". Their analogs are produced in the laboratory via the irradiation of gas mixtures and ice mixtures by radiation simulating Solar ultraviolet (UV) photons or keV charged particles simulating particles trapped in Saturn's magnetosphere. Fair analogs of Titan tholin are produced by bombarding a 9:1 mixture of N2:CH4 with charged particles and its match to observations of both the spectrum and scattering properties of the Titan haze is very good over a wide range of wavelengths. In this paper, we describe the historical background of laboratory research on this kind of organic matter and how our laboratory investigations of Titan tholin compare. We comment on the probable existence of polycyclic aromatic hydrocarbons in the Titan Haze and how biological and nonbiological racemic amino acids produced from the acid hydrolysis of Titan tholins make these complex organic compounds prime candidates in the evolution of terrestrial life and extraterrestrial life in our own Solar System and beyond. Finally, we also compare the spectrum and scattering properties of our resulting tholin mixtures with those observed on Centaur 5145 Pholus and the dark hemisphere of Saturn's satellite Iapetus in order to demonstrate the widespread distribution of similar organics throughout the Solar System.  相似文献   
2.
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
3.
There are now a large number of small bodies in the outer solar system that are known to be covered with dark material. Attempts to identify that material have been thwarted by the absence of discrete absorption features in the reflection spectra of these planetesimals. An absorption at 2.2 micrometers that appeared to be present in several objects has not been confirmed by new observations. Three absorptions in the spectrum of the unusually red planetesimal 5145 Pholus are well-established, but their identity remains a mystery.  相似文献   
4.
GLONASS (Global Orbiting Navigation Satellite System) is the most recent satellite navigation system developed by the Soviet Union and currently in the pre-operational stage. Obvious parallels exist between GLONASS and the NAVSTAR Global Positioning System (GPS) developed in the United States and also, at present, in a pre-operational phase. In the progress towards operational status, the launch capability for NAVSTAR satellites has been seriously affected by the recent failure of the Space Shuttle Challenger, clearly increasing the prospects of GLONASS reaching operational status first. It is therefore the main purpose of this paper to discuss certain aspects of the GLONASS satellite navigation system, in particular its orbital features and radio-frequency signal characteristics. Comparisons with NAVSTAR are inevitable and for this reason, the paper begins with a brief resume of relevant features of the NAVSTAR GPS system for later reference. The main section of the paper then deals with orbital behaviour, radio frequency signal structure and channelisation using NAVSTAR as a reference point for discussion.  相似文献   
5.
New Horizons: Anticipated Scientific Investigations at the Pluto System   总被引:1,自引:0,他引:1  
The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25–2.50 micron spectral images for studying surface compositions, and measurements of Pluto’s atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to achieve the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth–moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth).  相似文献   
6.
The diverse populations of icy bodies of the outer Solar System (OSS) give critical information on the composition and structure of the solar nebula and the early phases of planet formation. The two principal repositories of icy bodies are the Kuiper belt or disk, and the Oort Cloud, both of which are the source regions of the comets. Nearly 1000 individual Kuiper belt objects have been discovered; their dynamical distribution is a clue to the early outward migration and gravitational scattering power of Neptune. Pluto is perhaps the largest Kuiper belt object. Pluto is distinguished by its large satellite, a variable atmosphere, and a surface composed of several ices and probable organic solid materials that give it color. Triton is probably a former member of the Kuiper belt population, suggested by its retrograde orbit as a satellite of Neptune. Like Pluto, Triton has a variable atmosphere, compositionally diverse icy surface, and an organic atmospheric haze. Centaur objects appear to come from the Kuiper belt and occupy temporary orbits in the planetary zone; the compositional similarity of one well studied Centaur (5145 Pholus) to comets is notable. New discoveries continue apace, as observational surveys reveal new objects and refined observing techniques yield more physical information about specific bodies.  相似文献   
7.
A sodium lidar, capable of measuring temperature in the 80–100 km region, has been in operation at São José dos Campos (23° S, 46 W) since March 2007. Good quality data have been obtained for late autumn, winter and spring, but weather conditions make it extremely difficult to make measurements from mid-November to mid- February. We find the temperature structure to be strongly modulated by tides and gravity waves, but average profiles typically show a primary mesopause height close to 100 km with temperatures around 180 K, and a tendency for a secondary minimum of about 185 K to occur close to 90 km. Vertical temperature gradients greater than 50 K/km are sometimes seen even on profiles averaged over several hours. The strongest gradients are always positive and are frequently associated with strong gradients in sodium concentration. On the other hand, we frequently see rapid changes in the temperature profile, suggesting that models and non-local temperature measurements, as made by satellite radiometers, for example, are of little use in applications such as the analysis of gravity wave propagation seen in airglow images.  相似文献   
8.
In an earlier study of sporadic sodium layers (Nas) [Simonich, D.M., Clemesha B.R., Batista, P.P. Sporadic layers and the vertical distribution of atmospheric sodium. Adv. Space Res. 35, 1976–1980, 2005], observed by lidar at São José do Campos (23°S, 46°W) we found that, although individual profiles give the impression that Nas layers involve sodium additional to the normal background layer, there is very little difference between the long-term averages of profiles with and without the presence of Nas. This led us to conclude that Nas layers result from the redistribution of an omnipresent source, rather than an additional source mechanism. We have now extended this study to investigate whether or not the relative magnitude of Nas layers influences this conclusion. To this end we manually characterized all the profiles obtained in the time interval from 1900 to 2200 LT for the years 1993–2004. This involved registering the upper and lower limits to each Nas layer observed, the height of the peak and the sodium concentration at each of these three points. We then computed average profiles for Nas layers of differing strengths, with strength defined as the concentration at the peak divided by the mean of the concentrations at the upper and lower boundaries. For strengths up to 4 the results confirmed our earlier conclusion but for Nas layer strengths greater than 4 we found a significant difference between the average profiles with and without Nas. For the strong Nas layers both the average abundance and the average peak sodium concentration were about 10% greater than for layers without Nas. This leads to the possibility that a different mechanism might be responsible for very stronger sporadic layers although we do not think this very likely.  相似文献   
9.
The heliogyro solar sail employs high aspect ratio blades that are rigidized by spinning about the central spacecraft, eliminating the need for structural booms typically used to tension traditional square sails. The easily scalable heliogyro gains its maneuverability by actuating the blades at their root with sinusoidal pitch profiles. The blade vibration caused by maneuvering must be attenuated using active control since there is little inherent damping in the blade material. Due to the small root pitch control torques required, on the order of 2 µNm, compared to the large friction torques associated with a root pitch actuator, it has only recently been shown that a single blade heliogyro impedance controller can add damping to the lowest frequency torsional modes of the blade in the presence of modeled actuator friction torques. However, the need to measure blade twist away from the actuator at the root creates a non-collocated control system. Some inherent damping at the blade’s higher frequency modes is therefore needed to stably add damping to the larger-magnitude low-frequency modes, hence control design is sensitive to the accuracy of the blade damping model. Recently, damping characterization tests performed on a small-scale heliogyro blade in a high-vacuum chamber invalidated the assumption of a linear viscous torsional blade damping model that was previously used in blade control designs. This paper describes the formulation of three modal damping models based on the new experimental data and their integration into the single blade heliogyro model. A comparison of the robustness and performance envelopes for the baseline proximal blade twist feedback controller using these damping models shows the ability to meet the required settling time of less than 720 s necessary for a heliogyro technology demonstration mission. This comparison of physically realizable root pitch control systems for a heliogyro blade is critical to increasing the sailcraft to Technology Readiness Level three.  相似文献   
10.
Much of our knowledge of planetary surface composition is derived from remote sensing over the ultraviolet through infrared wavelength ranges. Telescopic observations and, in the past few decades, spacecraft mission observations have led to the discovery of many surface materials, from rock-forming minerals to water ice to exotic volatiles and organic compounds. Identifying surface materials and mapping their distributions allows us to constrain interior processes such as cryovolcanism and aqueous geochemistry. The recent progress in understanding of icy satellite surface composition has been aided by the evolving capabilities of spacecraft missions, advances in detector technology, and laboratory studies of candidate surface compounds. Pioneers 10 and 11, Voyagers I and II, Galileo, Cassini and the New Horizons mission have all made significant contributions. Dalton (Space Sci. Rev., 2010, this issue) summarizes the major constituents found or inferred to exist on the surfaces of the icy satellites (cf. Table 1 from Dalton, Space Sci. Rev., 2010, this issue), and the spectral coverage and resolution of many of the spacecraft instruments that have revolutionized our understanding (cf. Table 2 from Dalton, Space Sci. Rev., 2010, this issue). While much has been gained from these missions, telescopic observations also continue to provide important constraints on surface compositions, especially for those bodies that have not yet been visited by spacecraft, such as Kuiper Belt Objects (KBOs), trans-Neptunian Objects (TNOs), Centaurs, the classical planet Pluto and its moon, Charon. In this chapter, we will discuss the major satellites of the outer solar system, the materials believed to make up their surfaces, and the history of some of these discoveries. Formation scenarios and subsequent evolution will be described, with particular attention to the processes that drive surface chemistry and exchange with interiors. Major similarities and differences between the satellites are discussed, with an eye toward elucidating processes operating throughout the outer solar system. Finally we discuss the outermost satellites and other bodies, and summarize knowledge of their composition. Much of this review is likely to change in the near future with ongoing and planned outer planet missions, adding to the sense of excitement and discovery associated with our exploration of our planetary neighborhood.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号