首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航空   5篇
航天技术   1篇
  2013年   1篇
  2007年   2篇
  2004年   1篇
  2002年   1篇
  1991年   1篇
排序方式: 共有6条查询结果,搜索用时 250 毫秒
1
1.
In preparation for the flyby of the Rosetta spacecraft, the state of the knowledge of 21 Lutetia and 2867 Steins obtained by ground based observations is reported. Preliminary determination of shape and/or size, rotational properties and taxonomic types are presented for both asteroids. The dusty environment of the targets has been studied in order to help in defining safe fly-by trajectories without the risk of damaging collisions. The expected science return from the asteroid fly-by is also discussed.  相似文献   
2.
In recent years several works have been carried out with the aim of understanding some of the physical and compositional properties of asteroid populations. Three recent works are based on statistical analyses of those asteroids for which a complete set of selected parameters were available: namely, a set of 589 asteroids described by seven colors indices /1/, a subset of that one, of 438 asteroids for which IRAS albedo values were available /2/ and a set of 357 asteroids described by three variables: two reflected light color indices and high-quality IRAS albedo /3/. We compare the different methods used and discuss the differences in the results obtained: some differences result from the grouping technique chosen, and some on the quality of the data sets used. We discuss particularly the classifications of some peculiar asteroids: Earth-crossing objects, and asteroids that may be extinct cometary nuclei.  相似文献   
3.
Fulchignoni  M.  Ferri  F.  Angrilli  F.  Bar-Nun  A.  Barucci  M.A.  Bianchini  G.  Borucki  W.  Coradini  M.  Coustenis  A.  Falkner  P.  Flamini  E.  Grard  R.  Hamelin  M.  Harri  A.M.  Leppelmeier  G.W.  Lopez-Moreno  J.J.  McDonnell  J.A.M.  McKay  C.P.  Neubauer  F.H.  Pedersen  A.  Picardi  G.  Pirronello  V.  Rodrigo  R.  Schwingenschuh  K.  Seiff  A.  Svedhem  H.  Vanzani  V.  Zarnecki  J. 《Space Science Reviews》2002,104(1-4):395-431
The Huygens Atmospheric Structure Instrument (HASI) is a multi-sensor package which has been designed to measure the physical quantities characterising the atmosphere of Titan during the Huygens probe descent on Titan and at the surface. HASI sensors are devoted to the study of Titan's atmospheric structure and electric properties, and to provide information on its surface, whether solid or liquid. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
4.
5.
The Composite Infrared Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer (FTS) on the Cassini orbiter that measures thermal radiation over two decades in wavenumber, from 10 to 1400 cm− 1 (1 mm to 7μ m), with a spectral resolution that can be set from 0.5 to 15.5 cm− 1. The far infrared portion of the spectrum (10–600 cm− 1) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view (FOV). The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600–1100 cm− 1, 1100–1400 cm− 1). Each focal plane is composed of a 1× 10 array of HgCdTe detectors, each detector having a 0.3-mrad FOV. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS’s ability to observe atmospheres in the limb-viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn’s icy satellites. It will similarly map Saturn’s rings, characterizing their dynamical and spatial structure and constraining theories of their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
6.
The VIRTIS (Visual IR Thermal Imaging Spectrometer) experiment has been one of the most successful experiments built in Europe for Planetary Exploration. VIRTIS, developed in cooperation among Italy, France and Germany, has been already selected as a key experiment for 3 planetary missions: the ESA-Rosetta and Venus Express and NASA-Dawn. VIRTIS on board Rosetta and Venus Express are already producing high quality data: as far as Rosetta is concerned, the Earth-Moon system has been successfully observed during the Earth Swing-By manouver (March 2005) and furthermore, VIRTIS will collect data when Rosetta flies by Mars in February 2007 at a distance of about 200 kilometres from the planet. Data from the Rosetta mission will result in a comparison – using the same combination of sophisticated experiments – of targets that are poorly differentiated and are representative of the composition of different environment of the primordial solar system. Comets and asteroids, in fact, are in close relationship with the planetesimals, which formed from the solar nebula 4.6 billion years ago. The Rosetta mission payload is designed to obtain this information combining in situ analysis of comet material, obtained by the small lander Philae, and by a long lasting and detailed remote sensing of the comet, obtained by instrument on board the orbiting Spacecraft. The combination of remote sensing and in situ measurements will increase the scientific return of the mission. In fact, the “in situ” measurements will provide “ground-truth” for the remote sensing information, and, in turn, the locally collected data will be interpreted in the appropriate context provided by the remote sensing investigation. VIRTIS is part of the scientific payload of the Rosetta Orbiter and will detect and characterise the evolution of specific signatures – such as the typical spectral bands of minerals and molecules – arising from surface components and from materials dispersed in the coma. The identification of spectral features is a primary goal of the Rosetta mission as it will allow identification of the nature of the main constituent of the comets. Moreover, the surface thermal evolution during comet approach to sun will be also studied.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号