首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航空   4篇
航天技术   2篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  1997年   1篇
  1994年   1篇
  1965年   1篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
We investigate numerically the dynamical evolution of a boundary driven, topologically complex low plasma. The initial state is a simple, but topologically nontrivial 3D magnetic field, and the evolution is driven by forced motions on two opposite boundaries of the computational domain. A large X-type reconnection event with a supersonic one-sided jet occurs as part of a process that brakes down the large scale topology of the initial field. An energetically steady state is reached, with a double arcade overall topology, in which the driving causes continuous creation of small scale thin current sheets at various locations in the arcade structures.  相似文献   
2.
Particle acceleration in solar flares remains an outstanding problem in plasma physics and space science. While the observed particle energies and timescales can perhaps be understood in terms of acceleration at a simple current sheet or turbulence site, the vast number of accelerated particles, and the fraction of flare energy in them, defies any simple explanation. The nature of energy storage and dissipation in the global coronal magnetic field is essential for understanding flare acceleration. Scenarios where the coronal field is stressed by complex photospheric motions lead to the formation of multiple current sheets, rather than the single monolithic current sheet proposed by some. The currents sheets in turn can fragment into multiple, smaller dissipation sites. MHD, kinetic and cellular automata models are used to demonstrate this feature. Particle acceleration in this environment thus involves interaction with many distributed accelerators. A series of examples demonstrate how acceleration works in such an environment. As required, acceleration is fast, and relativistic energies are readily attained. It is also shown that accelerated particles do indeed interact with multiple acceleration sites. Test particle models also demonstrate that a large number of particles can be accelerated, with a significant fraction of the flare energy associated with them. However, in the absence of feedback, and with limited numerical resolution, these results need to be viewed with caution. Particle in cell models can incorporate feedback and in one scenario suggest that acceleration can be limited by the energetic particles reaching the condition for firehose marginal stability. Contemporary issues such as footpoint particle acceleration are also discussed. It is also noted that the idea of a “standard flare model” is ill-conceived when the entire distribution of flare energies is considered.  相似文献   
3.
Using our new 3-D relativistic particle-in-cell (PIC) code parallelized with MPI, we investigated long-term particle acceleration associated with a relativistic electron–positron jet propagating in an unmagnetized ambient electron–positron plasma. The simulations were performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. Acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value as predicted by hydrodynamic shock compression. In the jet (reverse) shock behind the bow (forward) shock the strongest electromagnetic fields are generated. These fields may lead to time dependent afterglow emission. In order to calculate radiation from first principles that goes beyond the standard synchrotron model used in astrophysical objects we have used PIC simulations. Initially we calculated radiation from electrons propagating in a uniform parallel magnetic field to verify the technique. We then used the technique to calculate emission from electrons in a small simulation system. From these simulations we obtained spectra which are consistent with those generated from electrons propagating in turbulent magnetic fields with red noise. This turbulent magnetic field is similar to the magnetic field generated at an early nonlinear stage of the Weibel instability. A fully developed shock within a larger simulation system may generate a jitter/synchrotron spectrum.  相似文献   
4.
2D reconnection is possible only in connection with the existence of a singularity in the magnetic field line topology, associated with a magnetic null point or a current sheet. Both of these provide an X-type structure of the magnetic field where fields of opposite polarity meet and reconnect. In 3D a similar topology is found in a null point pair, when the null points are connected by a separator line. The separator is defined as the intersection line of the two null-point fan planes. This paper reports on the topological evolution of this configuration with respect to different perturbations emerging from imposed boundary velocities, using a nonlinear numerical approach.  相似文献   
5.
The atmosphere of the Sun is characterized by a complex interplay of competing physical processes: convection, radiation, conduction, and magnetic fields. The most obvious imprint of the solar convection and its overshooting in the low atmosphere is the granulation pattern. Beside this dominating scale there is a more or less smooth distribution of spatial scales, both towards smaller and larger scales, making the Sun essentially a multi-scale object. Convection and overshooting give the photosphere its face but also act as drivers for the layers above, namely the chromosphere and corona. The magnetic field configuration effectively couples the atmospheric layers on a multitude of spatial scales, for instance in the form of loops that are anchored in the convection zone and continue through the atmosphere up into the chromosphere and corona. The magnetic field is also an important structuring agent for the small, granulation-size scales, although (hydrodynamic) shock waves also play an important role—especially in the internetwork atmosphere where mostly weak fields prevail. Based on recent results from observations and numerical simulations, we attempt to present a comprehensive picture of the atmosphere of the quiet Sun as a highly intermittent and dynamic system.  相似文献   
6.
A definition of the five categories of technical effort in the Air Force; an establishment of a new subcategorization of basic research (unbounded and guided); and a discussion in detail of the following, with cross-references to like problems in industrial concerns: 1) basic research, 2) exploratory development, 3) advanced development, 4) the role of the manager, 5) the manager's desirable and undesirable traits, 6) the role of the scientist and engineer, 7) the organization, and 8) future trends.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号