首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 819 毫秒
1.
I present observational and theoretical evidence that most of the pulsar spin-down energy is transferred away as a striped pulsar wind and that this energy is released by annihilation of the alternating magnetic field at the pulsar wind termination shock. One-dimensional particle-in-cells (PIC) simulations show that the alternating fields do annihilate at the termination shock in a striped wind. The particle acceleration should be studied in multidimensional simulations. As a first step, I simulated driven annihilation of alternating fields undergoing compression by an external force. It is shown that that in the course of this process, a particle distribution function is formed, which resembles that observed in plerions.  相似文献   

2.
Based upon the most efficient electron acceleration near the midplane of 3D non-neutral driven reconnecting current sheet (RCS) and the electrostatic wave excitation by the drift Maxwellian distribution of electrons in Vlasov simulation, we assume that the electrostatic waves mainly propagate opposite to the reconnecting electric field and investigated how these waves affect the electron acceleration. The main results are: (1) when the electron’s velocity equals to the phase speed of the waves, they will be trapped and have the different accelerating characteristics from the untrapped electrons through solving the momentum equations of electrons analytically; (2) the test particle simulations further prove that the number of the energetic electrons decreases with the increasing intensity of unstable waves, and the distribution of the energetic electrons takes on the double power-law.  相似文献   

3.
One of the main endeavors of the “Space Weather” program is the prediction of the appearance of very large fluxes of relativistic electrons with energies larger than 1 MeV, because they represent a serious potential hazard for satellite missions. Large fluxes of relativistic electrons are formed in the outer radiation belt during the recovery phase of some storms. The formation of large fluxes is connected to a balance between the acceleration and loss processes. A two-step acceleration process is ordinarily analyzed. A “Seed” population with energies ∼hundreds of keV appeared during expansion phase of magnetospheric substorm. A “Seed” population is additionally accelerated obtaining relativistic energies by some other process. Several acceleration mechanisms have been proposed for the explanation of the electron acceleration, including radial diffusion and internal acceleration by wave-particle interactions. Nevertheless, none of them takes into account great changes of magnetospheric topology during a magnetic storm. Such changes are mainly connected with asymmetric and symmetric ring current development. We analyze the changes of magnetospheric topology during magnetic storms. We show that a change of the magnetospheric magnetic field can be the important factor determining the acceleration of relativistic electrons.  相似文献   

4.
2010年4月地球同步轨道相对论电子增强事件分析   总被引:2,自引:2,他引:0  
为研究2010年4月地球同步轨道相对论电子通量异常增强事件的原因, 选取了2004-2010年之间高速太阳风下7个类似事件进行对比分析. 探讨了多种可能导致此次异常事件的太阳风和地磁条件. 结果表明, 较弱的磁暴使得相对论电子高通量区域更接近同步轨道, 此外, 哨声波加速很可能在2010年4月地球同步轨道相对论电子通量异常增强事件中起到重要作用. 磁暴强度与种子电子的注入深度密切相关, 表现为Dst指数曲线的形态与能量为30~100keV的电子高通量区域的下边缘高度吻合. 能量为30~100keV电子的注入深度影响了能量大于300keV的电子出现的磁层区域. 此事件中, 由于磁暴相对较弱, 种子电子向内磁层注入的深度较浅, 更靠近同步轨道区域, 这使得相对论电子大量出现的区域也靠近同步轨道, 最终导致同步轨道相对论电子通量异常增强. 另外, 2010年4月地球同步轨道相对论电子通量异常增强事件中, 高强度的亚暴提供了充足的种子电子并加强了波粒相互作用, 这也是相对论电子增强的必要条件.   相似文献   

5.
The conversion of Langmuir waves into electromagnetic radiations is an important mechanism of solar type III bursts. Langmuir waves can be easily excited by electron beam instability, and they can be converted into backward propagating Langmuir waves by wave–wave interaction. Generally, the backward propagating Langmuir waves are very important for the second harmonic emission of solar type III bursts. In this work, we pay particular attention to the mechanism of the backward propagating Langmuir waves by particle in cell (PIC) simulations. It is confirmed that the ions play a key role in exiting the backward propagating Langmuir waves. Moreover, the electron beam can hardly generated the backward propagating Langmuir waves directly, but may directly amplify the second harmonic Langmuir waves.  相似文献   

6.
Highly modulated waves near electron plasma frequency with both parallel and perpendicular polarization have been observed near diffusion region at dayside and in the tail region. In this paper, two dimensional Particle-In-Cell (PIC) simulation was performed to study the possible generation mechanism of these modulated electron plasma waves. It is shown that weak beam instability could generate the modulated Langmuir wave and the ambient magnetic field plays an important role in the formation of modulation. When the weak beam has loss cone distribution, highly modulated upper hybrid waves are generated and propagate with large angle to the ambient magnetic field. The properties of these modulated waves are discussed and compared with observations.  相似文献   

7.
We propose a jet model for the low/hard state of galactic black-hole X-ray sources which explains the energy spectra from radio to X-rays and a number of timing properties in the X-ray domain such as the time lag spectra, the hardening of the power density spectra and the narrowing of the autocorrelation function with increasing photon energy. The model assumes that (i) there is a magnetic field along the axis of the jet, (ii) the electron density in the jet drops inversely proportional to distance, (iii) the jet is “hotter” near its center than at its periphery, and (iv) the electrons in the jet follow a power-law distribution function. We have performed Monte Carlo simulations of Compton upscattering of soft photons from the accretion disk and have found power-law high-energy spectra with photon-number index in the range 1.5–2 and cutoff at a few hundred keV, power-law time lags versus Fourier frequency with index 0.8, and an increase of the rms amplitude of variability and a narrowing of the autocorrelation function with increasing photon energy as they have been observed in Cygnus X-1. The spectrum at long wavelengths (radio, infrared, optical) is modeled to come from synchrotron radiation of the energetic electrons in the jet. We find flat to inverted radio spectra that extend from the radio up to about the optical band. For magnetic field strengths of the order 105–106 G at the base of the jet, the calculated spectra agree well in slope and flux with the observations.  相似文献   

8.
General properties of accretion onto isolated stellar-mass black holes in the Galaxy are discussed. An analysis of plasma internal energy growth during the infall is performed. Adiabatic heating of collisionless accretion flow due to magnetic adiabatic invariant conservation is 25% more efficient than in the standard non-magnetized gas case. It is shown that magnetic field line reconnections in discrete current sheets lead to significant nonthermal electron component formation, which leads to a formation of a hard (UV, X-ray, up to gamma), highly variable spectral component in addition to the standard synchrotron optical component first derived by Shvartsman generated by thermal electrons in the magnetic field of the accretion flow. Properties of accretion flow emission variability are discussed. Observation results of two single black hole candidates – gravitational lens MACHO-1999-BLG-22 and radio-loud X-ray source with featureless optical spectrum J1942+10 – in optical band with high temporal resolution are presented and interpreted in the framework of the proposed model.  相似文献   

9.
Compressional waves propagating in the partially ionised solar lower atmospheric plasmas can easily steepen into nonlinear waves, including shocks. Here we investigate the effect of weak dispersion generated by Hall currents perpendicular to the ambient magnetic field on the characteristics of shock waves. Our study will also focus on the interplay between weak dispersion and partial ionisation of the plasma. Using a multiple scale technique we derive the governing equation in the form of a Korteweg-de Vries-Burgers equation. The effect of weak dispersion on shock waves is obtained using a perturbation technique. The secular behaviour of second order terms is addressed with the help of a renormalization technique. Our results show that dispersion modifies the characteristics of shock waves and this change is dependent also on the ionisation degree of the plasma. Dispersion can create short lived oscillations in the shocked plasma. The shock fronts become wider with the increase in the number of neutrals in the plasma.  相似文献   

10.
We investigate electron acceleration due to shear Alfvén waves in a collissionless plasma for plasma parameters typical of 4–5RE radial distance from the Earth along auroral field lines. Recent observational work has motivated this study, which explores the plasma regime where the thermal velocity of the electrons is similar to the Alfvén speed of the plasma, encouraging Landau resonance for electrons in the wave fields. We use a self-consistent kinetic simulation model to follow the evolution of the electrons as they interact with a short-duration wave pulse, which allows us to determine the parallel electric field of the shear Alfvén wave due to both electron inertia and electron pressure effects. The simulation demonstrates that electrons can be accelerated to keV energies in a modest amplitude sub-second period wave. We compare the parallel electric field obtained from the simulation with those provided by fluid approximations.  相似文献   

11.
Pc 5 ULF waves are seen concurrently with the rise in radiation belt fluxes associated with CME magnetic cloud events. A 3D global MHD simulation of the 10–11 January, 1997 event has been analyzed for mode structure and shown to contain field line resonance components, both toroidal and poloidal, with peak power on the nightside during southward IMF conditions. A mechanism for inward radial transport and first-invariant conserving acceleration of relativistic electrons is assessed in the context of ULF mode structure analysis, and compared with groundbased and satellite observations.  相似文献   

12.
利用测试粒子数值模拟的方法研究了与STEREO-A卫星观测到的2008年4月24日行星际激波事件相关联的超热电子90°投掷角的增强.根据激波到达前给定时刻超热电子的观测分布,拟合得到不同投掷角的初始分布函数;在给定的激波参数下,采用时间向后的方法计算特定能道上激波下游超热电子的投掷角分布.由于超热电子具有较高的共振频率,模拟采用的磁场湍流谱包含了低能电子发生共振的耗散区.对以215.76,151.67,106.63,eV为中心的三个能道进行了模拟.结果表明,不同能道上超热电子在激波下游的投掷角分布均在90°投掷角附近出现峰值,呈现出明显的90°投掷角增强,这与观测结果符合得很好.可以认为在激波对电子的加速过程中,电子与湍流耗散区的共振对90°投掷角的增强具有重要作用.   相似文献   

13.
Release of stored magnetic energy via particle acceleration is a characteristic feature of astrophysical plasmas. Magnetic reconnection is one of the mechanisms for releasing energy from magnetized plasmas. Collisionless magnetic reconnection could provide both the energy release mechanism and the particle accelerator in space plasmas. Here we studied particle acceleration when fluctuating (in-time) electric fields are superposed on an static X-type magnetic field in collisionless hot solar plasma. This system is chosen to mimic the reconnective dissipation of a linear MHD disturbance. Our results are compared to particle acceleration from constant electric field superposed on an X-type magnetic field. The constant electric field configuration represents the effects of steady state magnetic reconnection. Time evolution of ion and electron distributions are obtained by numerically integrating particle trajectories. The frequencies of the electric field represent a turbulent range of waves. Depending on the frequency and amplitude of the electric field, electrons and ions are accelerated to different degrees and have energy distributions of bimodal form consisting of a lower energy part and a high energy tail. For frequencies (ω in dimensioless units) in the range 0.5 ? ω ? 1.0 a substantial fraction (20%–30%) of the proton distribution is accelerated to gamma-ray producing energies. For frequencies in the range 1 ? ω ? 100.0 the bulk of the electron distribution is accelerated to hard X-ray producing energies. The acceleration mechanism is important for solar flares and solar noise storms but it could be applicable to all collisionless astrophysical plasmas.  相似文献   

14.
We investigate the acceleration of charged particles in a time-dependent chaotic magnetic field in this work. In earlier works, it has been demonstrated that in an asymmetric wire-loop current systems (WLCSs), the magnetic field is of chaotic in nature. Furthermore, observations also showed that there exist time-varying current loops and current filaments in solar corona. It is therefore natural to conceive that the magnetic field on the solar surface is chaotic and time-dependent. Here, we develop a numerical model to study the acceleration process of charged particles in a time-varying chaotic magnetic field that is generated by an ensemble of 8 WLCSs. We found that the motion of energetic particles in the system is of diffusive in nature and a power law spectrum can quickly develop. The mechanism examined here may serve as an efficient pre-acceleration mechanism that generates the so-called seed particles for diffusive shock acceleration at a coronal mass ejection (CME) driven shock in large solar energetic particle (SEP) events.  相似文献   

15.
通常认为,同步轨道区的电子通量增加是由于磁暴或者上游太阳风高速流的扰动所引起.近来的观测表明,起源于太阳活动的行星际高能电子也是引起同步轨道电子通量增加的重要原因之一.Zhao等在研究2000年7月14日太阳剧烈活动时发现,同步轨道区相对论电子通量巨幅增加时没有观察到上游太阳风高速流的扰动,并且磁暴发生在电子通量事件之后.采用解析磁场模型和实际磁场模型(T96模型)模拟来自太阳的相对论电子在磁尾中的运动特性.计算结果表明,当行星际磁场南向时,进入到磁尾的行星际相对论电子可以从较远的磁尾区域运动到同步轨道区域.这一研究结果从理论上论证了起源于太阳活动的高能电子可以对同步轨道区相对论电子通量的增加产生重要的作用.  相似文献   

16.
Many interplanetary shock waves have a fast mode MHD wave Mach number between one and two and the ambient solar wind plasma and magnetic field are known to fluctuate. Therefore a weak, fast, MHD interplanetary shock wave propagating into a fluctuating solar wind region or into a solar wind stream will be expected to vary its strength.It is possible that an interplanetary shock wave, upon entering such a region will weaken its strength and degenerate into a fast-mode MHD wave. It is even possible that the shock may dissipate and disappear.A model for the propagation of a solar flare - or CME (Coronal Mass Ejections) - associated interplanetary shock wave is given. A physical mechanism is described to calculate the probability that a weak shock which enters a turbulent solar wind region will degenerate into a MHD wave. That is, the shock would disappear as an entropy-generate entity. This model also suggests that most interplanetary shock waves cannot propagate continuously with a smooth shock surface. It is suggested that the surface of an interplanetary shock will be highly distorted and that parts of the shock surface can degenerate into MHD waves or even disappear during its global propagation through interplanetary space. A few observations to support this model will be briefly described.Finally, this model of shock propagation also applies to corotating shocks. As corotating shocks propagate into fluctuating ambient solar wind regions, shocks may degenerate into waves or disappear.  相似文献   

17.
存在初始引导场情况下的无碰撞磁场重联   总被引:2,自引:0,他引:2  
采用二维三分量的全粒子模拟方法研究了不同初始引导场情况下的无碰撞磁场重联及初态为一维的Harris电流片.结果表明,Bz0>0.5B0的强引导场不仅会显著改变粒子的运动轨迹,而且会改变重联区附近的电场和流场结构,从而影响重联率和电子加速.运用广义欧姆定律解释了不同引导场下电场的结构特征.另外,通过对扩散区附近束流电子的跟踪研究发现,在二维模型中,不论引导场强弱,位于扩散区中心垂直模拟平面的感应电场对电子加速起主要作用,而扩散区外平面电场的贡献很小.   相似文献   

18.
The Zakharov–Kuznetzov (ZK) equation is derived for nonlinear electrostatic waves in a weakly magnetized plasma in the presence of anisotropic ion pressure and superthermal electrons. The anisotropic ion pressure is defined using Chew–Goldberger–Low (CGL) while a generalized Lorentzian (kappa) distribution is assumed for the non-thermal electrons. The standard reductive perturbation method (RPM) is employed to derive the two dimensional ZK equation for the dynamics of obliquely propagating low frequency ion acoustic wave. The influence of spectral index (kappa) of non-thermal electron on the soliton is discussed in the presence of anisotropic ion pressure in plasmas. It is found that ion pressure anisotropy and superthermality of electrons affect both the width and amplitude of the solitary waves. On the other hand the magnetic field is found to alter the dispersive property of the plasma only, and hence the width of the solitons is affected while the amplitude of the solitary waves is independent of external magnetic field. The numerical results are also presented for illustrations.  相似文献   

19.
The recent detection of radio loud quasars with a large high energy γ-ray luminosity is discussed, in the framework of non-thermal synchrotron self Compton models. These observations are strong evidence of relativistic beaming of the radiation, due to the absence of strong photon-photon opacity. If γ-rays are self Compton emission, these sources can be the first observed example of a Compton catastrophe, resulting from the dominance of the radiation over the magnetic energy density. Inhomogeneous and relativistic jet models can in this case explain the observed spectrum from the far infrared to the γ-rays. If, on the other hand, the magnetic energy density is dominant, then the γ-rays must be due to direct synchrotron emission, implying very large particle energies. Pure synchrotron models which take into account electron-positron pair production are then discussed. Multifrequency simultaneous observations are a powerful test of the models.  相似文献   

20.
The paper presents a summary of results from two different simulations which study the tearing, coalescence and fragmentation of current sheets, the associated production of energetic electrons and of plasma waves from these electrons which could explain drifting pulsation structures observed at radio wavelengths. Using a 2.5-D particle-in-cell (PIC) model of the current sheet it is shown that due to the tearing mode instability the current sheet tears into plasmoids and these plasmoids later on coalesce into larger ones. During these processes electrons are accelerated and they produce observable electromagnetic waves. Furthermore, the 3-D PIC model with two current sheets extended in the electric current direction shows their fast fragmentation associated with the exponential dissipation of the free magnetic field energy. An example of the drifting pulsating structure which is considered to be a radio signature of the above mentioned processes in solar flares is shown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号