首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   2篇
航空   1篇
航天技术   17篇
  2023年   2篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2014年   2篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2005年   1篇
  1998年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
The occurrence of mid-latitude spread F (SF) over South Africa has not been extensively studied since the installation of the DPS-4 digisondes in 1996 and 2000 at Grahamstown (33.32 °S, 26.50 °E) and Madimbo (22.38 °S, 30.88 °E) respectively. This study is intended to quantify the probability of occurrence of F region disturbances associated with SF over South Africa. A study was conducted using data for 8 years (2001–2008) over Madimbo (with a time resolution of 30 min) and Grahamstown (with a variable time resolution of 15 and 30 min). In this study, SF has been classified into frequency SF (FSF), range SF (RSF) and mixed SF (MSF). The SF events were identified by manually identifying ionograms showing SF and tabulating them according to type for further statistical analysis. The results show that the diurnal pattern of SF peaks strongly between 01:00 and 02:00 local time, LT (LT = UT + 2 h), where UT is the universal time. This pattern is true for all seasons and types of SF at Madimbo and Grahamstown in 2001 and 2005, except for RSF which had peaks during autumn and spring in 2001 at Madimbo. The probability of both MSF and FSF tends to increase with decreasing solar activity, with a peak in 2005 (a moderate solar activity period). The seasonal peaks of MSF and FSF are more frequent during winter months at both Madimbo and Grahamstown. In this study, SF was evident in ∼0.03% and ∼0.06% of the available ionograms at Madimbo and Grahamstown respectively during the 8 years.  相似文献   
2.
The diurnal and seasonal variations of F2 layer characteristics (critical frequency, peak height and bottomside thickness) over Irkutsk, Russia (52.3 N and 104.3 E) are studied by the method of running medians. The comparison with the IRI-2001 model during the decrease in solar activity in 2003–2006 revealed cases of both close agreement and systematic differences between predictions and observations. The systematic difference is not the only reason for disagreement between IRI and observations; there are also intrayear variations which are not associated with seasonal behavior. The period of observation was too short to make conclusions about solar activity dependence of the noon bottomside thickness and the modification of its diurnal behavior with decreasing solar activity.  相似文献   
3.
We report work utilizing 15-min resolution ionospheric data obtained with DPS-4 digisonde in 2003–2011 to study the seasonal variations in amplitudes and phases of the most powerful spectral components of the F2 layer critical frequency (foF2) and peak height (hmF2) fluctuations over Irkutsk (52.5°N, 104.0°E). We show that fluctuations of both parameters contain quasi-harmonic components with periods of Tn = 24/n h (n = 1–7). The number of distinct spectral peaks varies from 3 in summer to 7 in winter. Amplitude and phase characteristics of the diurnal (n = 1) and semidiurnal (n = 2) components is studied using the data sets extracted from the original data sets with band-pass filter. It has been found that the amplitudes of diurnal/semidiurnal foF2 and diurnal hmF2 components are maximum in winter and minimum in summer. Amplitudes of the diurnal components vary gradually; those of the foF2 semidiurnal one, abruptly, thus forming a narrow winter maximum in November–January. The phase (local time of maximum) of the diurnal foF2 component increases gradually by 4–6 h from winter to summer. The phase of the semidiurnal foF2 component is nearly stable in winter/summer and sharply decreases (increases) by 2–3 h near the spring (autumn) equinox. The phase of the diurnal component of hmF2 (local time of minimum) varies slightly between 1130 and 1300 LT; that of the semidiurnal one decreases (increases) by 4–6 h from January to March (from September to November). The results obtained show that the main features of seasonal variations in the diurnal and semidiurnal components of the mid-latitude F2 layer parameters recur consistently during the solar activity growth and decline phases.  相似文献   
4.
本文用新乡(电离层400km对下点是:32.4°N,115.6°E)、重庆(电离层400km对下点是:27.2°N,108.7°E)接收日本同步卫星ETS-Ⅱ的信标资料,研究了我国中纬地区上空半个太阳活动周期内(1981—1985)电离层等效板厚的变化特征,得到了等效板厚日变化、季变化的二维和三维等值图。由付里叶分析和回归方法得出等效板厚日变化各谐波分量与太阳黑子数12个月滑动平均值之间存在弱的线性关系。同时指出在等效板厚日变化中,于当地时0400—0700LT存在一明显的黎明峰。并对出现这种峰的原因作了讨论。   相似文献   
5.
Comparison of regular (diurnal, seasonal and solar cycle) variations of high-latitude,mid-latitude and low-latitude ionospheric characteristics has been provided on basis of local empirical models of the peak electron density and the peak height. The local empirical models were derived from the hand-scaled ionogram data recorded by DPS-4 digisondes located at Norilsk (69°N, 88°E), Irkutsk (52°N, 104°E) and Hainan (19°N, 109°E) for a 6-year period from December, 2002 to December, 2008. The technique used to build the local empirical model is described. The primary focus is diurnal-seasonal behavior under low solar activity and its change with increasing solar activity. Both common and specific features of the high-latitude (Norilsk), mid-latitude (Irkutsk) and low-latitude (Hainan) regular variations were revealed using their local empirical models.   相似文献   
6.
This paper presents annual, seasonal and diurnal variations of integrated water vapor (IWV) derived from Global Positioning System (GPS) measurements for a tropical site, Hyderabad (17.4° N, 78.46° E). The zenith wet delay (ZWD) due to the troposphere has been computed using GPS observations and collocated meteorological data. ZWD is converted to IWV with very little added uncertainty. Mean monthly IWV values show maximum in July (~50 kg m−2) and minimum in December (~15 kg m−2). Fast Fourier Transform (FFT) and Harmonic analyses methods have been adopted to extract amplitudes and phases of diurnal (24 h), semi-diurnal (12 h) and ter-diurnal (8 h) oscillations which yielded comparable results. Amplitude of the 24 h component is observed to be maximum in spring whereas 12 h and 8 h components maximize in summer. A cross-correlation study between available daily IWV values and corresponding surface temperatures over one year produced a good correlation coefficient (0.44). The correlation obtained for different seasons got reduced to 0.25, 0.02, −0.39 and 0.21 for winter, spring, summer and autumn seasons respectively. The correlation between IWV and rainfall is poor. The coefficients obtained for the whole year is 0.05 and −0.13 for the rainy season.  相似文献   
7.
平流层,中间层,低热层大气加热过程特性研究   总被引:3,自引:1,他引:2  
本文计算了平流层、中间层和低热层大气中各种光化过程的加热率与大气的冷却率,并且给出了20—140km的大气净加热率的昼夜变化特征.为大气潮汐波的研究提供了基础.  相似文献   
8.
This is to investigate ways of improving the Equatorial F2-layer peak heights estimated from M(3000)F2 ionosonde data measured using the Ionospheric Prediction Service (IPS-42) sounder at Ouagadougou, Burkina Faso (Latitude +12.4°N, Longitude +1.5°W, Dip latitude +5.9°N) during a low solar activity year (1995). For this purpose, we have compared the observed hmF2 (hmF2obs) deduced using an algorithm from scaled virtual heights of quiet day ionograms and the predicted hmF2 values which is given by the IRI 2007 model (hmF2IRI 2007) with the ionosonde measured M(3000)F2 estimation of the hmF2 values (hmF2est) respectively. The correlation coefficients R2 for all the seasons were found to range from 0.259 to 0.692 for hmF2obs values, while it ranges from 0.551 to 0.875 for the hmF2IRI 2007 values. During the nighttime, estimated hmF2 (hmF2est) was found to be positively correlated with the hmF2obs values by the post-sunset peak representation which is also represented by the hmF2IRI 2007 values. We also investigated the validity of the hmF2est values by finding the percentage deviations when compared with the hmF2obs and hmF2IRI 2007.  相似文献   
9.
The diurnal and seasonal changes of the variability (VR) of Maximum Useable Frequency (MUF) are compared with those of peak electron density (NmF2) at Ibadan (7.4°N, 3.9°E, 6°S dip) in the African sector. Also compared is the latitudinal effect on both characteristics by combining data from Singapore (1.3°N, 103.8°E, 17.6°S dip) in the East Asian sector and Slough (51.5°N, 359.4°E, 66.5°S dip) in the European sector. MUF VR is found to be about half of NmF2 VR at all the hours and seasons and during the solar cycle epochs considered for the three stations. While nighttime MUF VR is greater in June Solstice and September Equinox during both low and moderate solar activities and in September Equinox and December Solstice during high solar activity, nighttime NmF2 VR is greater in June Solstice and September Equinox during high solar activity and greater at the equinoxes during low and moderate solar activities. This signifies a shift in nighttime MUF peak VR from the middle six months during low and moderate solar activities to the last half of the year during high solar activity. Daytime VR of both characteristics are not observed to show any seasonal variation. MUF VR and that of NmF2 are found to increase and decrease alternately with the Zurich sunspot number (Rz) for Ibadan and Singapore. For Slough, the VR of both characteristics increases with Rz during the first half of the day. It then increases and decreases alternately with Rz during the remaining hours of the day. While nighttime MUF VR decreases with latitude, just like nighttime NmF2 VR, no latitudinal effect is found for daytime VR of both characteristics.  相似文献   
10.
Statistical and spectral analyses are performed to investigate variations of two ionosphere F2 layer key parameters, the critical frequency (foF2) and the peak height (hmF2), that were measured over Irkutsk (52.5°N, 104.0°E) from December 2006 to January 2008 under solar minimum. The analyses showed that both parameters contain quasi-harmonic oscillations with periods of Tn = 24/n hours (n = 1–7), among which the diurnal (n = 1) and semidiurnal (n = 2) ones are the strongest. Seasonal variations are explored of mean and median values, spectrum, amplitude, and phase of the diurnal and semidiurnal components of foF2 and hmF2.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号