首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   6篇
  国内免费   22篇
航空   32篇
航天技术   29篇
综合类   3篇
航天   37篇
  2023年   1篇
  2022年   2篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   6篇
  2016年   2篇
  2015年   3篇
  2014年   3篇
  2013年   8篇
  2012年   6篇
  2011年   7篇
  2010年   4篇
  2009年   9篇
  2008年   5篇
  2007年   10篇
  2006年   8篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
61.
盘绕式伸展臂展开后,由于预紧力的作用,横杆被压缩至弯曲状态,同时斜拉索张紧.振动幅度较大时,斜拉索会松弛.以建立一种可以描述上述情况下盘绕式伸展臂基频特性的模型为目的,针对弯曲横杆及可松弛斜拉索做了如下处理,用较小的弹性模量及相应的预应变来模拟横杆受压弯曲后刚度较小,并具有预应力的特点;用一根可拉压杆模拟两根交替松弛的斜拉索.按照上述思想将松弛前后的盘绕式伸展臂作为两种结构,分别在Ansys中建立模型,计算得到这两种结构的基频.之后将伸展臂等效为满足分段线性刚度特性的连续梁模型,其分段刚度对应斜拉索松弛前后两种结构.结合有限元模型得到的斜拉索松弛判据,建立振幅较大时盘绕式伸展臂的振动方程.使用等价线性化方法,得到盘绕式伸展臂等效频率随端部振幅的变化关系,并用Ansys的瞬态分析对上述等效频率结果进行了仿真验证.上述模型及结果可以作为盘绕式伸展臂的设计指导及振动控制的理论基础.   相似文献   
62.
张晓天  谌颖  贾光辉  黄海 《宇航学报》2013,34(5):597-604
建立了一种航天器防护结构超高速碰撞数值模拟的节点分离有限元方法。通过重合节点网格转换和添加节点集约束建立了节点分离有限元模型。在显式积分迭代中,将达到断裂判据的节点集解离,从而生成裂纹。对网格畸变问题进行分析,并建立了几何识别方法,进而删除畸变单元,改善了算法的稳定性。应用节点分离方法模拟了单层板超高速撞击问题,并分析了撞击速度对弹丸变形程度和碎片云形状的影响。应用节点分离方法对Whipple防护结构、填充式防护结构和多层网结构进行了模拟,获得了与实验一致的结果。多种算例表明,节点分离有限元方法改善了以往断裂侵蚀有限元方法处理网格畸变、碎片云模拟以及二次碎片云碰撞等方面的能力,对典型防护结构模拟具有很好的适用性,能够成为光滑粒子流体动力学(SPH)方法的有效补充和替代。  相似文献   
63.
大行程Hexapod平台及其隔振实验   总被引:2,自引:0,他引:2  
为提高车载、机载光学设备在低频大振幅扰动环境中的观测精度,研制了具有6自由度振动隔离能力的大行程主动隔振平台.平台主动元件采用直线电机,并针对隔振任务设计了无间隙万向节结构.隔振平台采用6-UPS并联机构Hexapod构型,具有30 kg承载能力,上平面可进行±30 mm平动和±8°转动.Hexapod平台控制方法采用PID(Proportion-Integral-Derivative)定位控制和X滤波自适应逆振动控制结合的方法.对Hexapod平台进行3~20 Hz垂直方向正弦振动隔离实验结果显示,平台对基座振动的振幅隔离幅度高于90%,对5~20 Hz频段随机振动隔离实验结果显示,隔振前后上平面振幅峰峰值下降78%.  相似文献   
64.
遥感卫星总体参数设计的建模与协同优化   总被引:2,自引:1,他引:1  
针对遥感卫星的总体参数设计问题,建立以卫星覆盖幅宽、地面分辨率和总重综合的指标为目标的优化问题,考虑卫星的控制(GNC,Guidance, Navigation and Control)、电源、结构和热控(TCS,Thermal Control System)分系统的分析模型并整理其中的耦合关系,以协同优化(CO,Collaborative Optimization)方法为框架建立多学科设计优化(MDO,Multidisciplinary Design Optimization)模型并用罚函数法求解,获得了协同一致且性能提升的结果.验证了所建模型的合理性和MDO方法应用于卫星总体参数设计优化的有效性.各分系统的模型及求解方法可为MDO方法的工程化应用研究提供参考.  相似文献   
65.
Hexapod平台参数设计优化   总被引:4,自引:1,他引:3  
夏禹  黄海 《航空学报》2008,29(5):1168-1173
 针对工程应用中的Hexapod平台参数设计优化问题进行研究。Hexapod的上下平台半径被选作设计变量,同时分析了其运动约束条件,包括杆作动器的伸缩范围,铰链转角,作动杆间的干涉条件等,其中对杆间干涉约束进行了简化处理。此外,设计变量上下限、各平移或转动自由度上的行程要求等也被作为约束考虑。目标函数以工作空间、承载能力和运动逆解精度等量度的加权形式表示,由此建立了参数优化问题的模型,该问题用遗传方法求解。数值仿真表明,经参数优化后的Hexapod平台满足所有考虑的工程要求;对比等杆长的Cubic构形Hexapod,所设计的Hexapod平台在工作空间、承载能力方面具有明显优势,从而证明了该参数优化方法的有效性和实用性。  相似文献   
66.
某卫星平台多结构工况下的优化设计   总被引:1,自引:0,他引:1  
采用航天器结构优化系统ESSOSⅡ(Engineering System of Structural Optimization for Spacecraft),对某复杂卫星结构进行了以重量最轻为目标、以其中复合材料板件的铺层厚度为设计变量的优化设计,考虑发射(收拢)和在轨(展开)2种结构工况下的基频和应力等约束条件.基于2种结构工况下的有限元模型,采用二级多点逼近寻优算法进行优化求解,每一次优化迭代过程中均需对各结构工况模型作有限元分析.优化后结构重量比初始设计有明显降低,且满足收拢、展开结构工况中的所有约束条件,为卫星结构分系统的改进设计提供了依据,同时进一步验证了ESSOSⅡ系统的有效性.  相似文献   
67.
针对40Kg级的航模直升机的技术特点,构建了飞行控制系统的硬件架构,研制出来了基于DSP和ARM双CPU系统的飞控计算机;详细介绍了基于μC/OS-Ⅱ实时操作系统的DSP/ARM双系统的机载飞控软件架构和功能模块;最后,鉴于直升机控制的技术难度和航模直升机特殊的飞行特点,对航模直升机的控制思想、控制策略以及飞行试验提出了自己的认识和实施路线。  相似文献   
68.
复杂结构振动控制设计与仿真方法研究   总被引:1,自引:0,他引:1  
为了避免在建立结构数学模型过程中因简化和降阶引起的模型误差,解决复杂结构建模难的问题,提高控制器设计的准确性,提出了一种新的基于有限元法(FEM)的结构振动控制设计方法.该方法可借助于商用结构有限元分析软件来实现,简便易行,在PATRAN/NASTRAN环境中利用PATRAN命令语言PCL(Patran Command Language)建立了通用结构控制仿真平台.通过对压电自适应桁架结构的振动控制进行控制设计仿真和实验验证,证明了新方法的有效性;与Simulink使用简化模型的仿真结果相比,新方法的结果与实验结果更为接近,表明其准确性更高.该方法适用于对处在设计阶段的复杂结构进行控制设计与仿真评估.   相似文献   
69.
针对基于并联机构的空间精密跟瞄Hexapod平台的大行程、高性能要求,通过对现有主动元件的分析,从作动器角度研制了以滚珠丝杠作动器为宏动部分、压电作动器为微动部分的大行程高频响精密复合作动器,测试了复合作动器的行程、开环定位精度及动态特性,以dSPACE半物理仿真系统为核心建立了实验系统,进行了复合作动器单自由度精确定位实验和振动主动控制实验.由结果可知,复合作动器作动行程超过50mm、经微动部分补偿后的整体定位误差小于1μm、正弦持续扰动下采用自适应滤波ADC(Active Disturbance Canceller)方法使振幅下降90%以上.结果表明,将此复合作动器应用于空间高稳定精密跟瞄Hexapod平台是完全可行的.   相似文献   
70.
Hexapod微激振平台具有负载重量大和振动量级小的特点,为了实现精确卸载、作动器小量级精密控制,研制了基于空气弹簧支撑的Hexapod微激振平台。该平台包括负责工作状态承载的4点梯形分布的空气弹簧柔性支撑和负责非工作状态承载的3点刚性辅助支撑两部分。针对该平台自动调平控制的两大问题:即柔性支撑与刚性支撑之间存在的力耦合以及气路控制中存在的非线性和时延性,提出了连续充气和脉冲充气相结合的开关控制策略。为验证自动调平控制的可行性,在负载重量约为200 kg的Hexapod微激振平台上进行试验,结果表明,平台可在140 s内实现自动调平,且6个作动腿位移误差不超过1 mm。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号