首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   1篇
  国内免费   6篇
航空   19篇
航天技术   23篇
航天   13篇
  2023年   3篇
  2021年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   9篇
  2013年   7篇
  2012年   2篇
  2011年   4篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2005年   6篇
  2003年   1篇
  1999年   1篇
  1995年   1篇
排序方式: 共有55条查询结果,搜索用时 718 毫秒
41.
着重于寻找月核证据并将月核模型引入月球天平动理论中,探讨如何将多种空间探测技术应用于毫角秒精度的月球天平动观测,进而测定液态和固态月核参量。通过讨论多层月球的月球物理参数、流体核的几何与动力学椭率、松散黏滞的月幔,可获得月球相关详细信息与参量,这些参量对评估多层结构的月球自由天平动很重要。物理天平动的解析理论还可应用于未来多种月球工作中,期望在近代月球科学研究基础上能有进一步发展。  相似文献   
42.
《中国航空学报》2021,34(12):99-109
This paper presents a practical and efficient design method for aircraft Mission Success Space (MSS) based on the entropy measurement (EM). First, fundamentals regarding MSS, Inverse Design (ID) and entropy are discussed. Then, two EM schemes of entropy-based ID and the whole MSS ID procedure are given to demonstrate alternative ways of entropy quantification and MSS design. After that, Genetic Algorithm (GA) is utilized as a search algorithm to find the optimal MSS design with the minimum objective, entropy, in each EM scheme. A simulation case of aircraft penetration mission is given for the method validation where the best aircraft MSS design is obtained by GA according to the minimum entropy. Results from two schemes are compared at the end.  相似文献   
43.
空间核反应堆电源技术概览   总被引:4,自引:1,他引:3  
空间核反应堆电源具有环境适应性好、功率覆盖范围广、结构紧凑以及大功率条件下质量功率比小等突出优点,在军民航天任务中具有广阔的应用前景,是改变未来航天动力格局的颠覆性技术之一。对空间核反应堆电源的原理、特点、适用范围、应用前景、历史发展情况及现状、典型方案、应用安全等进行了系统介绍,对技术发展趋势进行了分析总结,并就我国该技术发展给出一些见解。  相似文献   
44.
We present a concept for a challenging in situ science mission to a primitive, binary near-Earth asteroid. A sub-400-kg spacecraft would use solar electric propulsion to rendezvous with the C-class binary asteroid (175706) 1996 FG3. A campaign of remote observations of both worlds would be followed by landing on the ∼1 km diameter primary to perform in situ measurements. The total available payload mass would be around 34 kg, allowing a wide range of measurement objectives to be addressed. This mission arose during 2004 from the activities of the ad-hoc Small Bodies Group of the DLR-led Planetary Lander Initiative. Although the particular mission scenario proposed here was not studied further per se, the experience was carried over to subsequent European asteroid mission studies, including first LEONARD and now the Marco Polo near-Earth asteroid sample return proposal for ESA’s Cosmic Vision programme. This paper may thus be of interest as much for insight into the life cycle of mission proposals as for the concept itself.  相似文献   
45.
Electrostatic space radiation shielding   总被引:2,自引:0,他引:2  
For the success of NASA’s new vision for space exploration to Moon, Mars and beyond, exposures from the hazards of severe space radiation in deep space long duration missions is ‘a must solve’ problem. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation revisits electrostatic active radiation shielding and explores the feasibility of using the electrostatic shielding in concert with the state-of-the-art materials shielding and protection technologies. The full space radiation environment has been used, for the first time, to explore the feasibility of electrostatic shielding. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn for the future directions of space radiation protection.  相似文献   
46.
曾声奎 《航空学报》1995,16(Z1):15-19
提出了一种工程化的任务可靠性指标分配的方法。分析了任务可靠性分配的实质,把适用于基本可靠性指标分配的比例组合法与评分分配法的原则拓广到任务可靠性指标的分配,提出了工程化的任务可靠性指标分配方法,给出了表格化、规范化的工作程序,并讨论了这种工程处理方法的精度、收敛性等特点。  相似文献   
47.
Rosetta Ground Segment and Mission Operations   总被引:1,自引:0,他引:1  
At the European Space Operations Centre in Darmstadt (Germany) the activities for ground segment development and mission operations preparation for Rosetta started in 1997. Many of the characteristics of this mission were new to ESOC and have therefore required an early effort in identifying all the necessary facilities and functions. The ground segment required entirely new elements to be developed, such as the large deep-space antenna built in New Norcia (Western Australia). The long duration of the journey to the comet, of about 10 years, required an effort in the operations concept definition to reduce the cost of routine monitoring and control. The new approaches adopted for the Rosetta mission include full transfer of on-board software maintenance responsibility to the operations team, and the installation of a fully functioning spacecraft engineering model at ESOC, in support of testing and troubleshooting activities in flight, but also for training of the operations staff. Special measures have also been taken to minimise the ground contact with the spacecraft during cruise, to reduce cost, down to a typical frequency of one contact per week. The problem of maintaining knowledge and expertise in the long flight to comet Churyumov–Gerasimenko is also a major challenge for the Rosetta operations team, which has been tackled early in the mission preparation phase and evolved with the first years of flight experience.  相似文献   
48.
Analysis and design of low-energy transfers to the Moon has been a subject of great interest for decades. Exterior and interior transfers, based on the transit through the regions where the collinear libration points are located, have been studied for a long time and some space missions have already taken advantage of the results of these studies. This paper is concerned with a geometrical approach for low-energy Earth-to-Moon mission analysis, based on isomorphic mapping. The isomorphic mapping of trajectories allows a visual, intuitive representation of periodic orbits and of the related invariant manifolds, which correspond to tubes that emanate from the curve associated with the periodic orbit. Two types of Earth-to-Moon missions are considered. The first mission is composed of the following arcs: (i) transfer trajectory from a circular low Earth orbit to the stable invariant manifold associated with the Lyapunov orbit at L1 (corresponding to a specified energy level) and (ii) transfer trajectory along the unstable manifold associated with the Lyapunov orbit at L1, with final injection in a periodic orbit around the Moon. The second mission is composed of the following arcs: (i) transfer trajectory from a circular low Earth orbit to the stable invariant manifold associated with the Lyapunov orbit at L1 (corresponding to a specified energy level) and (ii) transfer trajectory along the unstable manifold associated with the Lyapunov orbit at L1, with final injection in a capture (non-periodic) orbit around the Moon. In both cases three velocity impulses are needed to perform the transfer: the first at an unknown initial point along the low Earth orbit, the second at injection on the stable manifold, the third at injection in the final (periodic or capture) orbit. The final goal is in finding the optimization parameters, which are represented by the locations, directions, and magnitudes of the velocity impulses such that the overall delta-v of the transfer is minimized. This work proves how isomorphic mapping (in two distinct forms) can be profitably employed to optimize such transfers, by determining in a geometrical fashion the desired optimization parameters that minimize the delta-v budget required to perform the transfer.  相似文献   
49.
The cratering event produced by the Deep Impact mission is a unique experimental opportunity, beyond the capability of Earth-based laboratories with regard to the impacting energy, target material, space environment, and extremely low-gravity field. Consequently, impact cratering theory and modeling play an important role in this mission, from initial inception to final data analysis. Experimentally derived impact cratering scaling laws provide us with our best estimates for the crater diameter, depth, and formation time: critical in the mission planning stage for producing the flight plan and instrument specifications. Cratering theory has strongly influenced the impactor design, producing a probe that should produce the largest possible crater on the surface of Tempel 1 under a wide range of scenarios. Numerical hydrocode modeling allows us to estimate the volume and thermodynamic characteristics of the material vaporized in the early stages of the impact. Hydrocode modeling will also aid us in understanding the observed crater excavation process, especially in the area of impacts into porous materials. Finally, experimentally derived ejecta scaling laws and modeling provide us with a means to predict and analyze the observed behavior of the material launched from the comet during crater excavation, and may provide us with a unique means of estimating the magnitude of the comet’s gravity field and by extension the mass and density of comet Tempel 1.  相似文献   
50.
The VIRTIS (Visual IR Thermal Imaging Spectrometer) experiment has been one of the most successful experiments built in Europe for Planetary Exploration. VIRTIS, developed in cooperation among Italy, France and Germany, has been already selected as a key experiment for 3 planetary missions: the ESA-Rosetta and Venus Express and NASA-Dawn. VIRTIS on board Rosetta and Venus Express are already producing high quality data: as far as Rosetta is concerned, the Earth-Moon system has been successfully observed during the Earth Swing-By manouver (March 2005) and furthermore, VIRTIS will collect data when Rosetta flies by Mars in February 2007 at a distance of about 200 kilometres from the planet. Data from the Rosetta mission will result in a comparison – using the same combination of sophisticated experiments – of targets that are poorly differentiated and are representative of the composition of different environment of the primordial solar system. Comets and asteroids, in fact, are in close relationship with the planetesimals, which formed from the solar nebula 4.6 billion years ago. The Rosetta mission payload is designed to obtain this information combining in situ analysis of comet material, obtained by the small lander Philae, and by a long lasting and detailed remote sensing of the comet, obtained by instrument on board the orbiting Spacecraft. The combination of remote sensing and in situ measurements will increase the scientific return of the mission. In fact, the “in situ” measurements will provide “ground-truth” for the remote sensing information, and, in turn, the locally collected data will be interpreted in the appropriate context provided by the remote sensing investigation. VIRTIS is part of the scientific payload of the Rosetta Orbiter and will detect and characterise the evolution of specific signatures – such as the typical spectral bands of minerals and molecules – arising from surface components and from materials dispersed in the coma. The identification of spectral features is a primary goal of the Rosetta mission as it will allow identification of the nature of the main constituent of the comets. Moreover, the surface thermal evolution during comet approach to sun will be also studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号