首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78篇
  免费   20篇
  国内免费   8篇
航空   72篇
航天技术   4篇
综合类   16篇
航天   14篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2018年   4篇
  2017年   10篇
  2016年   5篇
  2015年   2篇
  2014年   5篇
  2013年   4篇
  2012年   5篇
  2011年   11篇
  2010年   7篇
  2009年   2篇
  2008年   4篇
  2007年   6篇
  2006年   7篇
  2005年   1篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   6篇
  1991年   1篇
  1989年   1篇
  1986年   1篇
排序方式: 共有106条查询结果,搜索用时 312 毫秒
61.
It is of great significance to improve the accuracy of turbulence models in shock-wave/ boundary layer interaction flow. The relationship between the pressure gradient, as well as the shear layer, and the development of turbulent kinetic energy in impinging shock-wave/turbulent boundary layer interaction flow at Mach 2.25 is analyzed based on the data of direct numerical simulation(DNS). It is found that the turbulent kinetic energy is amplified by strong shear in the separation zone and the adverse pressure gradient near the separation point. The pressure gradient was non-dimensionalised with local density, velocity, and viscosity. Spalart–Allmaras(S–A) model is modified by introducing the non-dimensional pressure gradient into the production term of the eddy viscosity transportation equation. Simulation results show that the production and dissipation of eddy viscosity are strongly enhanced by the modification of S–A model. Compared with DNS and experimental data, the wall pressure and the wall skin friction coefficient as well as the velocity profile of the modified S–A model are obviously improved. Thus it can be concluded that the modification of S–A model with the pressure gradient can improve the predictive accuracy for simulating the shock-wave/turbulent boundary layer interaction.  相似文献   
62.
本文采用两层涡粘性模型和速度剖面的指数律,导出了可压缩动量矩方程的剪切积分解析表示式,从而大大简化了边界层计算。和其它理论结果相比,本结果更接近于实验数据。  相似文献   
63.
凝胶推进剂直圆管中剪切速率与表观粘性实验研究   总被引:4,自引:4,他引:4  
左博  张蒙正 《火箭推进》2007,33(4):12-15
分析了直圆管中凝胶推进剂剪切速率和表观粘性与相关参数的关系,研究了直圆管中凝胶推进剂剪切速率和表观粘性的实验研究方法,利用物料管路测试系统进行了某型凝胶推进剂直圆管剪切速率与表观粘性实验研究。结果表明:管路实验可以得到较大范围内凝胶推进剂剪切速率与表观粘性关系;而且当剪切速率在104量级时表观粘度随剪切速率的增加基本不再变化。  相似文献   
64.
用非线性涡粘性模式计算三维湍流边界层   总被引:2,自引:1,他引:2  
针对非线性涡粘性模式在求解三维湍流边界层流动时的不足,本文从压力-变形率关联项中的快速项出发,考虑流动非均匀影响,在显式代数应力模式的雷诺应力表达式中引入了反映雷诺应力“松驰”效应的速度二阶导数项,构造了一个新的非线性涡粘性模式。通过对典型算例-翼体角隔流动的计算结果表明,新模式能较好地再现出三维湍流边界层内雷诺切应力方向的发展滞后于速度梯度方向发展这一流动特性。  相似文献   
65.
液体转动惯量综述   总被引:2,自引:0,他引:2  
根据近几年国外有关液体转动惯量的专题报道 ,对国内外航空重量工程界一直关注的液体转动惯量方面的一些问题进行了综述 ,并提出了一些工程上可供参考的意见。  相似文献   
66.
适用于RTM成型聚酰亚胺树脂的合成与性能研究   总被引:7,自引:1,他引:7  
使用4-苯乙炔苯酐(4-PEPA),2,3,3′4′-联苯四酸二酐(a-BPDA),1,4-双(4′-氨基-2′-三氟甲基苯氧基)苯(BTPB)和1,4-对苯二胺(p-PDA)合成了两种苯乙炔苯酐封端的聚酰亚胺低聚物PI-1和PI-2,并对低聚物的熔体粘度稳定性和热性能等进行系统研究.实验结果表明:采用热亚胺化方法制备的低聚物具有很高的产率(>99%);PI-1低聚物在280℃时表现出低的熔体粘度(<1Pa.s)和良好的熔体粘度稳定性,可用于RTM成型工艺制备树脂基复合材料;PI-1和PI-2低聚物经371℃固化后显示了优异的热性能,玻璃化转变温度超过400℃(DMA法,tanδ值),5%热失重温度超过520℃.  相似文献   
67.
将4-苯乙炔苯酐(4-PEPA)和3,3',4,4'-二苯醚四酸二酐(ODPA),与3,4'-二氨基二苯醚(3,4'-ODA)和1,4-双(4'-氨基-2'-三氟甲基苯氧基)苯(BTPB)或1,3-双(4-氨基苯氧基)苯(1,3,4-APB)混合物通过高温缩合聚合反应合成了两种苯乙炔苯酐封端的聚酰亚胺低聚物PI-1和PI-2,对其熔体黏度、热行为及固化物的热性能等进行了研究.实验表明,PI-1和PI-2低聚物在280℃时具有低的熔体黏度(<1 Pa·s)和良好的熔体黏度稳定性;经371℃固化后形成的纯树脂固化物具有优异的耐热性能,5%热失重温度超过520℃,Tg超过330℃,有望成为适用于RTM工艺的复合材料基体树脂.  相似文献   
68.
针对目前红外热像仪现场性能检测手段的不足,设计一套便携式红外热像仪最小可分辨温差(MRTD)检测装置,首先现场测量出红外热像仪的MRTD,再由大气透过率模型计算得到目标的表观温差,最后通过Johnson准则分析计算得到红外热像仪探测或识别目标的能力.试验结果表明该方法准确可行,可用于各类红外热像仪作用距离的检测.  相似文献   
69.
加工了具有相同尺寸和质量的多个金属橡胶,而各金属橡胶对应不同高度的毛坯,引入"压缩比"概念,即毛坯高度和模压后金属橡胶成品高度之比,分析压缩比对金属橡胶结构和力学特性的影响.准静态试验结果表明:压缩比会显著的影响金属橡胶的表观结构以及各向异性力学特性,压缩比较大,到达5~6时,金属橡胶表观的螺旋丝呈现有序的竖立堆积状,同时成型方向刚度偏小;而压缩为2时,成型方向刚度很大,非成型方向刚度相比于其余压缩比试件明显偏小.试验结果表明:在金属橡胶的加工和设计过程中,需要考虑压缩比对性能的影响.   相似文献   
70.
为了解决氧化铝基陶瓷型芯不易脱芯的难题,加入一定量的淀粉作为成孔剂。以白刚玉粉为基体材料、石蜡和蜂蜡为增塑剂、二氧化硅粉和氧化镁粉为矿化剂,采用热压注法制备氧化铝基陶瓷型芯;制备工艺参数如下:浆料温度为90℃、热压注压力为0.5 MPa、保压时间为25 s;研究不同淀粉加入量对氧化铝基陶瓷型芯性能的影响。结果表明:在烧结过程中,样品中淀粉的烧失,增大了氧化铝基陶瓷型芯内部的孔隙率;随着淀粉加入量的增加,氧化铝基陶瓷型芯的室温抗弯强度降低、显气孔率增大、溶失性增大、体积密度减小;经1560℃烧结2.5 h后,淀粉加入量为8%的氧化铝基陶瓷型芯综合性能最好,其室温抗弯强度为24.8 MPa、显气孔率为47.98%、溶失性为1.92 g/h、体积密度为1.88 g/cm3。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号