首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   13篇
  国内免费   13篇
航空   55篇
航天技术   157篇
综合类   12篇
航天   8篇
  2023年   7篇
  2022年   2篇
  2021年   5篇
  2020年   5篇
  2019年   10篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   5篇
  2014年   17篇
  2013年   12篇
  2012年   15篇
  2011年   23篇
  2010年   19篇
  2009年   12篇
  2008年   14篇
  2007年   5篇
  2006年   6篇
  2005年   38篇
  2004年   4篇
  2003年   4篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1997年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1985年   1篇
排序方式: 共有232条查询结果,搜索用时 171 毫秒
51.
风云一号天线反射板采用碳纤维/铝蜂窝夹层结构表面粘贴铝箔的结构形式。由于铝箔、碳纤维的热膨胀系数相差悬殊 ,因此具有很大的工艺难度。进行了大量的工艺实验后 ,在工艺特点分析和工艺实验的基础上 ,采用了合理的工艺路线 ,确定用中温胶双面贴铝箔作为天线反射板的铝箔粘贴工艺 ,解决了碳纤维/铝峰窝夹层结构表面粘贴铝箔胶接层中不能有气泡存在的工艺难点 ,满足了卫星轨道条件下不鼓泡、不脱落的使用要求 ,并保证了天线反射板平面度、孔位精度高的要求  相似文献   
52.
针对雾霾天气对舰载机目视着舰安全性的影响难以量化的问题,利用激光雷达在近海的能见度观测数据,反演海上雾霾天气下飞行员目视着舰的斜程能见度的状况,提出 1种基于能见度指标的目视着舰风险评估方法,将舰载机着舰过程中飞行员频繁的目测压力,转变为舰上数据测量、风险评估和应对措施等程序化工作,将定性的安全分析转变为定量的风险评估和安全指导,谋求在现有着舰控制模式下有效降低飞行员着舰压力,提升指挥引导效率,为低能见度下舰载机目视着舰训练提供理论依据和实践指导。  相似文献   
53.
The stability of GPS time and frequency transfer is limited by the fact that GPS signals travel through the ionosphere. In high precision geodetic time transfer (i.e. based on precise modeling of code and carrier phase GPS data), the so-called ionosphere-free combination of the code and carrier phase measurements made on the two frequencies is used to remove the first-order ionospheric effect. In this paper, we investigate the impact of residual second- and third-order ionospheric effects on geodetic time transfer solutions i.e. remote atomic clock comparisons based on GPS measurements, using the ATOMIUM software developed at the Royal Observatory of Belgium (ROB). The impact of third-order ionospheric effects was shown to be negligible, while for second-order effects, the tests performed on different time links and at different epochs show a small impact of the order of some picoseconds, on a quiet day, and up to more than 10 picoseconds in case of high ionospheric activity. The geomagnetic storm of the 30th October 2003 is used to illustrate how space weather products are relevant to understand perturbations in geodetic time and frequency transfer.  相似文献   
54.
Cosmic Ray research on Mt. Aragats began in 1934 with the measurements of East–West anisotropy by the group from Leningrad Physics-Technical Institute and Norair Kocharian from Yerevan State University. Stimulated by the results of their experiments in 1942 Artem and Abraham Alikhanyan brothers organized a scientific expedition to Aragats. Since that time physicists were studying Cosmic Ray fluxes on Mt. Aragats with various particle detectors: mass spectrometers, calorimeters, transition radiation detectors, and huge particle detector arrays detecting protons and nuclei accelerated in most violent explosions in Galaxy. Latest activities at Mt. Aragats include Space Weather research with networks of particle detectors located in Armenia and abroad, and detectors of Space Education center in Yerevan.  相似文献   
55.
The Geodetic Observatory Pecný (GOP) routinely estimates near real-time zenith total delays (ZTD) from GPS permanent stations for assimilation in numerical weather prediction (NWP) models more than 12 years. Besides European regional, global and GPS and GLONASS solutions, we have recently developed real-time estimates aimed at supporting NWP nowcasting or severe weather event monitoring. While all previous solutions are based on data batch processing in a network mode, the real-time solution exploits real-time global orbits and clocks from the International GNSS Service (IGS) and Precise Point Positioning (PPP) processing strategy. New application G-Nut/Tefnut has been developed and real-time ZTDs have been continuously processed in the nine-month demonstration campaign (February–October, 2013) for selected 36 European and global stations. Resulting ZTDs can be characterized by mean standard deviations of 6–10 mm, but still remaining large biases up to 20 mm due to missing precise models in the software. These results fulfilled threshold requirements for the operational NWP nowcasting (i.e. 30 mm in ZTD). Since remaining ZTD biases can be effectively eliminated using the bias-reduction procedure prior to the assimilation, results are approaching the target requirements in terms of relative accuracy (i.e. 6 mm in ZTD). Real-time strategy and software are under the development and we foresee further improvements in reducing biases and in optimizing the accuracy within required timeliness. The real-time products from the International GNSS Service were found accurate and stable for supporting PPP-based tropospheric estimates for the NWP nowcasting.  相似文献   
56.
In order to detect and study the ionospheric response to solar flares (transient high energy solar radiation), we have constructed a radio receiver station at Mexico City, which is part of the “Latin American Very low frequency Network” (LAVNet-Mex). This station extends to the northern hemisphere the so called “South American VLF Network”.  相似文献   
57.
It is shown the development and preliminary results of operational ionosphere dynamics prediction system for the Brazilian Space Weather program. The system is based on the Sheffield University Plasmasphere–Ionosphere Model (SUPIM), a physics-based model computer code describing the distribution of ionization within the Earth mid to equatorial latitude ionosphere and plasmasphere, during geomagnetically quiet periods. The model outputs are given in a 2-dimensional plane aligned with Earth magnetic field lines, with fixed magnetic longitude coordinate. The code was adapted to provide the output in geographical coordinates. It was made referring to the Earth’s magnetic field as an eccentric dipole, using the approximation based on International Geomagnetic Reference Field (IGRF-11). During the system operation, several simulation runs are performed at different longitudes. The original code would not be able to run all simulations serially in reasonable time. So, a parallel version for the code was developed for enhancing the performance. After preliminary tests, it was frequently observed code instability, when negative ion temperatures or concentrations prevented the code from continuing its processing. After a detailed analysis, it was verified that most of these problems occurred due to concentration estimation of simulation points located at high altitudes, typically over 4000 km of altitude. In order to force convergence, an artificial exponential decay for ion–neutral collisional frequency was used above mentioned altitudes. This approach shown no significant difference from original code output, but improved substantially the code stability. In order to make operational system even more stable, the initial altitude and initial ion concentration values used on exponential decay equation are changed when convergence is not achieved, within pre-defined values. When all code runs end, the longitude of every point is then compared with its original reference station longitude, and differences are compensated by changing the simulation point time slot, in a temporal adjustment optimization. Then, an approximate neighbor searching technique was developed to obtain the ion concentration values in a regularly spaced grid, using inverse distance weighting (IDW) interpolation. A 3D grid containing ion and electron concentrations is generated for every hour of simulated day. Its spatial resolution is 1° of latitude per 1° of longitude per 10 km of altitude. The vertical total electron content (VTEC) is calculated from the grid, and plotted in a geographic map. An important feature that was implemented in the system is the capacity of combining observational data and simulation outputs to obtain more appropriate initial conditions to the ionosphere prediction. Newtonian relaxation method was used for this data assimilation process, where ionosonde data from four different locations in South America was used to improve the system accuracy. The whole process runs every day and predicts the VTEC values for South America region with almost 24 h ahead.  相似文献   
58.
从机组运行和机务维修两个方面对气象雷达失效的放行限制进行了综合的分析评估,并对气象雷达系统进行由简到繁的排故介绍,为航线放行提供参考。  相似文献   
59.
Like all natural hazards, space weather exhibits occasional extreme events over timescales of decades to centuries. Historical events provoked much interest, and sometimes alarm, because bright aurora becomes visible at mid-latitudes. However, they had little economic impact because the major technologies of those eras were not sensitive to space weather. This is no longer true. The widespread adoption of advanced technological infrastructures over the past 40 years has created significant sensitivity. So these events now have the potential to disrupt those infrastructures – and thus have profound economic and societal impact. However, like all extreme hazards, such events are rare, so we have limited data on which to build our understanding of the events. This limitation is uniquely serious for space weather since it is a global phenomenon. Many other natural hazards (e.g. flash floods) are highly localised, so statistically significant datasets can be assembled by combining data from independent instances of the hazard recorded over a few decades. Such datasets are the foundation on which reliable risk assessment methodologies are built. But we have a single instance of space weather so we would have to make observations for many centuries in order to build a statistically significant dataset. We show that it is not practicable to assess the risk from extreme events using simple statistical methods. Instead we must exploit our knowledge of solar-terrestrial physics to find other ways to assess these risks. We discuss three alternative approaches: (a) use of proxy data, (b) studies of other solar systems, and (c) use of physics-based modelling. We note that the proxy data approach is already well-established as a technique for assessing the long-term risk from radiation storms, but does not yet provide any means to assess the risk from severe geomagnetic storms. This latter risk is more suited to the other approaches, but significant research is needed to make progress. We need to develop and expand techniques to monitoring key space weather features in other solar systems (stellar flares, radio emissions from planetary aurorae). And to make progress in modelling severe space weather, we need to focus on the physics that controls severe geomagnetic storms, e.g. how can dayside and tail reconnection be modulated to expand the region of open flux to envelop mid-latitudes?  相似文献   
60.
在危险天气条件下,需要研究航班改航路径规划的问题。对传统人工势场法中的斥力势函数进行修正,将目标点与障碍物的距离以及航空器与受限区的运动速度考虑在内,建立了动态人工势场法的多机改航路径规划模型。模型解决了障碍物附近目标不可达问题,并且适应动态运行环境。算例验证了模型的有效性和可行性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号