首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1043篇
  免费   170篇
  国内免费   152篇
航空   1151篇
航天技术   44篇
综合类   158篇
航天   12篇
  2024年   7篇
  2023年   32篇
  2022年   22篇
  2021年   45篇
  2020年   38篇
  2019年   34篇
  2018年   21篇
  2017年   52篇
  2016年   56篇
  2015年   42篇
  2014年   67篇
  2013年   58篇
  2012年   68篇
  2011年   84篇
  2010年   67篇
  2009年   53篇
  2008年   58篇
  2007年   41篇
  2006年   34篇
  2005年   35篇
  2004年   36篇
  2003年   21篇
  2002年   28篇
  2001年   29篇
  2000年   25篇
  1999年   27篇
  1998年   35篇
  1997年   40篇
  1996年   31篇
  1995年   18篇
  1994年   20篇
  1993年   37篇
  1992年   19篇
  1991年   21篇
  1990年   28篇
  1989年   27篇
  1988年   7篇
  1987年   1篇
  1985年   1篇
排序方式: 共有1365条查询结果,搜索用时 218 毫秒
61.
刘俊杰  苏三买  孙占恒  刘超 《推进技术》2017,38(11):2488-2495
针对压气机主动稳定控制方法中模态控制需要大量传感器及高频执行装置的不足,以喷气装置作为失速控制的执行机构,基于李亚普诺夫稳定性理论,利用回溯法设计了采用周向同步喷气的压气机预失速和过失速阶段的失速控制算法。理论分析和仿真结果表明,采用该方法,在预失速阶段,经过约1.1s持续喷气后,扰动的各阶模态的幅值均趋于0,各阶模态的相位均趋于恒定;在过失速阶段,持续约0.1s的喷气控制后,扰动的各阶模态被完全抑制,其各阶幅值趋于0,各阶模态相位趋于恒定;实现了对预失速和过失速的有效控制。由于以平均流量作为反馈输入,该方法只需安装少量传感器,且喷气装置的作动频率不高于50Hz,远低于模态控制方法。此外,采用同步喷气,也降低了执行机构的复杂性。  相似文献   
62.
肖志祥  崔文瑶  刘健  罗堃宇  孙元昊 《航空学报》2020,41(6):523451-523451
新一代战斗机强调超机动能力和强隐身性,其中大攻角下的静态失速、动态失速及内埋弹仓绕流是与高机动和强隐身密切相关的、极具挑战的几类典型的非定常流动,它们对数值方法提出了极高的要求。为了高精度地仿真流场、清楚地揭示流动机理,有效地控制非定常流动,非常有必要发展高精度且高效率的RANS-LES混合方法体系,包含RANS-LES混合方法本身、与RANS-LES混合方法匹配的高精度自适应耗散格式、基准湍流模式、高质量计算网格、高精度时间推进方法、非定常量的统计方法等,具有极强的紧迫性。提出、发展、验证并应用该类方法数值仿真新一代战斗机(包括单独部件、组合体、甚至全机)的非定常流动,数值预测结果与风洞实验数据吻合良好;此类方法可为新型战斗机设计提供理论依据和分析手段。  相似文献   
63.
根据飞机热除冰的物理过程,考虑外部空气动力和蒙皮表面加热的作用,建立了NACA 0012翼型前缘冰层应力计算模型。采用有限元方法和平面三角形单元对控制方程组进行了求解,获得了外部空气动力和蒙皮表面加热对冰层黏附界面应力的影响规律。研究表明:蒙皮表面不加热时,来流速度影响了黏附界面应力的强度,来流攻角影响了黏附界面应力的分布,冰-蒙皮间黏附界面切应力最大值随来流速度呈近似线性增大趋势,但外部空气动力很难造成冰层破坏。蒙皮表面加热时,冰-蒙皮间黏附界面的耦合应力和冰层内部的主应力随着热流密度的增大而增大,很容易超过剪切强度,这是造成冰破坏的关键因素。耦合冰-蒙皮剪切强度随界面温度的变化关系,初步建立了基于应力分析和热/力耦合作用的冰破坏判断准则。外部空气动力产生的界面应力和蒙皮表面加热产生的界面热应力之和,必须大于与蒙皮表面温度相关的剪切强度,则冰层发生破坏,破坏位置是耦合应力超过剪切强度的区域。   相似文献   
64.
耦合伴随方法和非嵌入式多项式混沌法,发展了高效、可靠的不确定性梯度优化设计方法。利用伴随方程法求解目标函数对不确定性变量的导数,发展了一种梯度增强型多项式混沌法。通过亚声速和跨声速下等多种算例可以证明该方法可以提高不确定性分析的效率和精度。同时,利用基于方差分解的全局敏感性分析方法对不确定性变量的敏感性进行了量化。建立了多项式混沌耦合伴随方程的统计矩梯度求解方法,并结合梯度增强型多项式混沌法搭建不确定性梯度优化设计系统。基于该优化设计系统对二维低亚声速和跨声速翼型开展确定性及不确定性优化设计研究。优化结果显示,相比于确定性优化设计,不确定性优化设计通过合理权衡确定性性能和不确定性性能,可提高抵抗马赫数和迎角不确定性扰动的能力,同时优化性能均值和标准差。其中阻力系数均值最大可降低17%,阻力系数标准差最大可降低80%。而确定性优化设计可能导致性能鲁棒性的降低。  相似文献   
65.
涡扇发动机在起动性能调试试验中屡屡出现失速导致起动失败,反复调试仍难以实现起动成功至慢车状态。为此,开展了发动机起动供油边界探索方法的研究,探索出发动机起动供油边界,作为起动供油规律调整的参考范围。随后进行了起动供油边界探索试验,获得了发动机起动供油边界,并依据该边界进行起动调试,成功实现了发动机起动至慢车状态。该方法为起动性能调试提供了依据,降低了起动调试的盲目性和风险,减少了起动调试次数,使发动机能够较快实现慢车运转。  相似文献   
66.
分布在弱电介质溶液中的电磁力(Lorentz力),可以有效地控制边界层的流动,且Lorentz力的大小、方向以及作用位置可根据实际需要来调整。在转动水槽中,通过示踪粒子流场显示以及升力和阻力的测试,对Lorentz力对翼型绕流以及升力和阻力的影响进行了实验研究,并利用拟压缩方法数值求解贴体坐标中的控制方程,对实验中的相应问题进行数值研究。基于实验和计算结果,对电磁力控制时的Lorentz力的大小以及作用位置对翼型绕流和升、阻力的影响及其内在原因进行了讨论。  相似文献   
67.
针对轴流压气机系统中的分岔预测问题,基于简化的Moore-Greitzer 3阶压气机模型,分析了该系统中存在的分岔现象;利用最新发展的确定学习理论,对压气机系统随着γ参数变化出现的几种典型模态的相关系统动态进行辨识,并将所学知识保存成常值RBF神经网络以构成模式库;利用该模式库构建1组嵌入了常值RBF神经网络的动态估计器;将测试模式与估计器相比,得到1组残差,并利用动态模式识别方法的残差最小原则实现了对Pitchfork分岔的预测。  相似文献   
68.
边界层转捩位置的准确预测对于提高飞行器气动性能的预测精度具有重要意义.选取与k-ω SST湍流模型相耦合的γ-Reθt模型,以零压力梯度平板为研究对象,通过求解基于有限体积法的雷诺平均N-S方程验证该模型自动捕捉流动转捩的准确性;将该模型应用于传统有压力梯度的NACA 0012翼型的流场特性和气动性能的研究中,并与原始k-ω SST模型的计算结果及全湍流试验数据进行比较.结果表明:远场边界距离对翼型阻力系数有较大的影响;与无转捩模型相比,γ-Reθt转捩模型对翼型阻力系数的预测精度有一定程度的提高;对于二维模型,γ-Reθt转捩模型难以捕捉翼型表面的三维效应和非定常分离特性.  相似文献   
69.
端区流动对跨声速压气机失速影响的数值研究   总被引:1,自引:1,他引:0       下载免费PDF全文
傅文广  孙鹏  徐佳汇  钟兢军 《推进技术》2016,37(7):1248-1255
为了揭示近失速工况下动叶间隙和静叶角区的复杂流动结构,探索诱发压气机失速的主要因素,对高负荷跨声速压气机开展数值研究,获得了整级压气机和单转子的特性曲线,进而对压气机的流场进行了详细分析。结果表明:对于研究对象,失速最先起始于静叶上角区。上角区完成由开式分离到闭式分离的转变过程,可以认为是静叶发生失速的标志。在近失速工况下,动叶叶尖泄漏涡发生"泡式破裂"堵塞流道,泄漏涡破裂引起的堵塞作用一直从叶顶延伸至70%叶高左右。  相似文献   
70.
马彩东  吴云  张志波  代辉 《推进技术》2016,37(12):2201-2209
为了研究单转子轴流压气机的涡动力学失稳机理,采用基于Shear Stress Transport(SST)湍流模型的尺度自适应雷诺平均/大涡(RANS/LES)混合模拟的方法对低速单转子轴流压气机进行了非定常数值模拟。研究结果表明:在设计转速3kr/min条件下,叶顶泄漏涡、二次泄漏涡以及诱导涡破碎引起的叶顶区域的堵塞是触发单转子轴流压气机内部流动失稳的主要因素。压气机由近堵塞工况点向小流量工况点逼近的过程中,叶顶泄漏涡轨迹与轴向的夹角由70°增加到76°,二次泄漏涡起始点位置前移加速叶顶泄漏涡向转子前缘移动。近失速工况点叶顶泄漏涡的轴向动量与主流的轴向动量之间存在一种平衡,叶顶泄漏涡稳定在转子前缘。压气机进一步节流主流的轴向动量减小,对叶顶泄漏涡轴向动量的抑制能力减弱,叶顶泄漏涡的位置不再稳定,诱发尖脉冲型失速先兆。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号