首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   4篇
  国内免费   1篇
航空   11篇
航天技术   7篇
综合类   2篇
航天   18篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2012年   2篇
  2011年   1篇
  2009年   1篇
  2008年   1篇
  2007年   6篇
  2006年   2篇
  2005年   3篇
  2004年   1篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
排序方式: 共有38条查询结果,搜索用时 234 毫秒
21.
为降低微小卫星的成本和提高卫星可靠性,研究采用磁力矩器作为唯一执行机构对卫星进行三轴姿态稳定的问题。利用线性二次型调节器(LinearQuadraticRegulator,LQR)最优控制理论分别设计无限时间状态调节器和定常增益状态调节器,实现纯磁控下的微小卫星对地三轴稳定控制。同时结合卫星实际工程应用,以在轨飞行的“开拓一号”卫星为研究对象,分析卫星惯量积、轨道倾角、剩磁干扰、气动干扰等因素对控制精度的影响。仿真结果表明LQR控制器具有稳定性和实用性,在小干扰情况下,控制精度较高。  相似文献   
22.
为解决用反馈线性化方法实现卫星姿态滑模变结构控制(VSC)中病态时确定逆矩阵方法的参数导致的控制精度与控制能量间的矛盾,提出将广义逆矩阵用于求解控制律,并给出了广义逆矩阵的求解方法。计算和比较结果显示,该法不仅控制精度高,而且能大幅节约控制能量。  相似文献   
23.
《中国航天》2004,(3):45-45
从去年10月16日同返回舱分离到今年1月26日,神舟5号飞船轨道舱已在轨运行了100天。神舟系列飞船的轨道舱是目前我国低轨道航天器中轨道管理时间最长的,约半年。这100天中,神五轨道舱共环绕地球飞行了1600圈。以其为平台,我国进行了一系列空间科学试验,而轨道舱的控制精度直接影响试验的效果。由于神舟5号的有效载荷对高度范围有较严格的要求,另外因为神舟5号轨道舱运行在近地轨道,受地球的干扰和受大气层的干扰比较厉害,所以要经常性地对它进行轨道维持。根据科学实验的需要,轨道舱共设计了3种飞行模式。100天来,北京航天指挥控制中心先后对…  相似文献   
24.
星上转动部件对卫星姿态的影响分析及补偿控制   总被引:2,自引:0,他引:2  
刘军  韩潮  张伟 《上海航天》2006,23(6):22-26,64
研究了考虑有效载荷运动部件干扰时三轴稳定卫星的姿态控制。由卫星有效载荷转动部件运动规律建立了转动部件和挠性太阳帆板的动力学模型,根据干扰力矩的特点,提出了一种通过设定角动量交换系统标称值条件对卫星进行控制,以及抑制变速转动部件引起卫星本体姿态扰动的前馈控制的方案。仿真结果表明,该控制方案可有效消除星内外干扰力矩对姿态控制精度的影响,卫星的指向精度优于0.2°。  相似文献   
25.
DARPA光学相控阵列芯片的研制成功将大大提高激光雷达的响应速度和控制精度。  相似文献   
26.
为满足工程中伺服系统所用控制算法的要求,基于控制系统输出误差及误差变化率的大小,在专家PID和模糊自适应PID之间进行模式转换,提出一种基于专家控制的模糊自适应PID控制算法。将该算法用于飞机燃油全模试验伺服控制系统中,并使用Matlab进行仿真。结果表明,该算法既具有模糊PID控制精度高、稳态性好、鲁棒性强的优点,又继承了专家PID控制器响应快速的特点,具有很好的控制效果。  相似文献   
27.
通过机电随动系统与电液随动系统特点的简要对比,阐述了在导弹发射装置中使用电液随动系统的优越性,系统基本组成原理及控制方法。  相似文献   
28.
中国航天     
《太空探索》2015,(4):4-5
<正>探月三期再入返回飞行器服务舱完成第三阶段拓展试验探月工程三期再入返回飞行器服务舱继续为嫦娥五号任务开展在轨验证,于3月7日完成第三阶段拓展试验,模拟嫦娥五号上升器与轨道器在月球轨道交会对接之前的飞行控制过程,验证嫦娥五号上升器远程导引控制策略、天地协同控制时序、轨道测量与飞行控制精度等相关技术,获取试验数据和经验,评估轨道设计和交会方案,为后续嫦娥五号任务顺利实施提供参考。据有关专家介绍,服务舱的工作完成得非常好,实现了一次发  相似文献   
29.
<正>航天器在太空环境中运行会遇到高温和低温两种环境。因为太阳是一个巨大的热源,而在太空的真空环境中无法进行传导与对流散热,所以在太阳直接照射到航天器时,如果不加防护,其温度可达100℃以上;但当航天器进入地球或地外星球阴影区时,温度又会低于-100℃以下。显而易见,航天器内的各种仪器设备不可能在如此大的温差环境中正常工作。另外,所绕星球的太阳光反射和红外低温辐射也会影响航天器温度;航天器内的仪器设备工作时还要向外散发热量。为此,航天器要有热控制(或叫温度控制)分系统,把航天器内温度控制在仪器设备可以正常工作的温度范围内。  相似文献   
30.
航天器姿态控制一直是地面飞控的核心,尤其对于有精确轨道控制要求的航天器,姿态控制的策略选择直接关系任务成败。探月三期月地高速再入返回任务对再入角有着严格要求,为了实现返回器高精度再入,在系统介绍服务舱的姿态控制模式、控制方法和控制流程的基础上,提出了利用修改相平面参数和轮控调姿,以建立轨控姿态,从而减少姿控喷气,并提高轨控精度的方法。飞行结果表明,中途修正的控制精度从最初的分米量级提高至0.009m/s。高精度轨道控制使得提前32h再入角控制精度达到0.024°,较设计指标提高1个数量级。文中提及的轮控调姿方法可作为未来深空探测任务姿态控制的设计参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号