首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   23篇
  国内免费   5篇
航空   38篇
航天技术   67篇
综合类   1篇
航天   24篇
  2024年   4篇
  2023年   11篇
  2022年   4篇
  2021年   8篇
  2020年   7篇
  2019年   12篇
  2018年   8篇
  2017年   1篇
  2016年   7篇
  2015年   4篇
  2014年   9篇
  2013年   9篇
  2012年   9篇
  2011年   4篇
  2010年   12篇
  2009年   3篇
  2007年   5篇
  2006年   2篇
  2005年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   2篇
  1995年   1篇
排序方式: 共有130条查询结果,搜索用时 15 毫秒
91.
HY-2卫星DORIS厘米级精密定轨   总被引:3,自引:0,他引:3  
"海洋二号"(HY-2)卫星搭载了新一代DORIS接收机,可提供双频相位和伪距测量数据。针对HY-2卫星的RINEX 3.0格式的相位测量数据,研究了一种区别于传统相位观测数据处理的历元间差分处理方法,将相位观测数据转换为距离变化率观测数据,并进行相关误差修正,建立了HY-2卫星的宏表面力和经验力等摄动模型,基于动力学定轨原理实现了基于DORIS相位观测数据的精密定轨。利用HY-2卫星的DORIS实测数据进行定轨,初步计算结果表明,径向轨道误差优于2cm、三维位置误差约10cm,满足HY-2卫星应用的厘米级轨道精度需求。  相似文献   
92.
丁文武  欧吉坤 《宇航学报》2013,34(6):795-800
针对实时动态PPP中常常会遇到卫星信号中断或大部分卫星发生周跳而导致重新初始化的问题,可以将GNSS信号短时间中断看作是全部卫星发生周跳,通过研究Doppler观测值在快速重新初始化中的观测模型,进而提出联合伪距、相位、Doppler观测值及电离层延迟变化约束信息的数学模型,对于发生周跳的卫星,通过将周跳参数固定为整数以实现动态PPP快速重新初始化。根据实际算例,从多个角度进行统计分析表明引入Doppler观测值能够提高周跳修复的成功率,从而加快PPP快速重新初始化的过程。  相似文献   
93.
In this study, genetic resampling (GRS) approach is utilized for precise orbit determination (POD) using the batch filter based on particle filtering (PF). Two genetic operations, which are arithmetic crossover and residual mutation, are used for GRS of the batch filter based on PF (PF batch filter). For POD, Laser-ranging Precise Orbit Determination System (LPODS) and satellite laser ranging (SLR) observations of the CHAMP satellite are used. Monte Carlo trials for POD are performed by one hundred times. The characteristics of the POD results by PF batch filter with GRS are compared with those of a PF batch filter with minimum residual resampling (MRRS). The post-fit residual, 3D error by external orbit comparison, and POD repeatability are analyzed for orbit quality assessments. The POD results are externally checked by NASA JPL’s orbits using totally different software, measurements, and techniques. For post-fit residuals and 3D errors, both MRRS and GRS give accurate estimation results whose mean root mean square (RMS) values are at a level of 5 cm and 10–13 cm, respectively. The mean radial orbit errors of both methods are at a level of 5 cm. For POD repeatability represented as the standard deviations of post-fit residuals and 3D errors by repetitive PODs, however, GRS yields 25% and 13% more robust estimation results than MRRS for post-fit residual and 3D error, respectively. This study shows that PF batch filter with GRS approach using genetic operations is superior to PF batch filter with MRRS in terms of robustness in POD with SLR observations.  相似文献   
94.
针对现有相位延迟估计方法未利用双差模糊度网解约束的特点,提出了一种附加双差模糊度网解约束的相位延迟估计方法。首先以整周双差模糊度网解为真值更新精密单点定位(PPP)估计的非差浮点模糊度,再通过网平差法估计未校正相位延迟(UPD)。实验结果表明,PPP双差模糊度与双差模糊度网解一致性好,其宽、窄巷中误差分别为0.07周和0.11周,误差大于1周的PPP双差模糊度主要出现在卫星初升阶段。约束改变了非差浮点模糊度,从而改变了参与UPD网平差的测站,使14%新升起卫星的窄巷UPD在短时间内较无约束有大于0.2周的差异。附加约束/无约束的全天星间单差UPD差异在大于99.9%的置信水平下满足零均值假设,表明整周双差模糊度网解约束方法与无约束方法估计UPD相关产品具有等效性。研究结果可为参考网非差模糊度解算和PPP与网络实时动态定位(RTK)的融合工作提供参考。  相似文献   
95.
精密单点定位(PPP)时间传递技术是国际时间比对的重要手段之一,为协调世界时的计算做出巨大贡献。为探究多系统融合PPP时间频率传递性能,选取3个国际授时实验室的测站数据组成2条链路,采用8种实验模式对比分析单系统、双系统、三系统和四系统PPP时间频率传递性能。实验结果表明:各多系统组合较单GPS系统在可见星数上均有较大提升,且极大改善了钟差精度因子,增加了时间比对结果的稳健性和可靠性。在时间传递稳定性方面:对于453.4 km的PTBB-BRUX链路,较单GPS系统,双系统中GPS/BDS组合提升效果最优,提升率约为10.39%,三系统中GPS/GLONASS/BDS组合提升率最优,约为11.86%,四系统组合提升率为11.98%,可从0.046 7 ns提升至0.041 1 ns;对于8 031.8 km的PTBB-NIST链路,GPS/BDS组合提升率约为4.89%,GPS/GLONASS/BDS组合提升率约为5.49%,四系统组合提升率为5.79%,可从0.114 0 ns提升至0.107 4 ns。在频率传递稳定度方面:在前10 000 s内双系统组合平均提升17.6%,三系统...  相似文献   
96.
本文介绍一种在精密时钟同步协议(PTP)的基础上发展而来的新技术——WR 技术(White Rabbit,白兔)。WR 联合同步以太网以及双混频时差法测量手段,通过对主从时钟间链路环路延迟的不间断高精度的测量,后以测量结果对从时钟的时钟信息进行动态校准,主从时钟的同步精度达到亚纳秒甚至皮秒级。文章先引出WR的发展历史,以及WR 中所包含的主要技术,并介绍目前WR 在某些科学领域所发挥的作用,最后提出WR 未来在其他领域的应用。  相似文献   
97.
Precise clock products are typically interpolated based on the sampling interval of the observational data when they are used for in precise point positioning. However, due to the occurrence of white noise in atomic clocks, a residual component of such noise will inevitable reside within the observations when clock errors are interpolated, and such noise will affect the resolution of the positioning results. In this paper, which is based on a twenty-one-week analysis of the atomic clock noise characteristics of numerous satellites, a new stochastic observation model that considers satellite clock interpolation errors is proposed. First, the systematic error of each satellite in the IGR clock product was extracted using a wavelet de-noising method to obtain the empirical characteristics of atomic clock noise within each clock product. Then, based on those empirical characteristics, a stochastic observation model was structured that considered the satellite clock interpolation errors. Subsequently, the IGR and IGS clock products at different time intervals were used for experimental validation. A verification using 179 stations worldwide from the IGS showed that, compared with the conventional model, the convergence times using the stochastic model proposed in this study were respectively shortened by 4.8% and 4.0% when the IGR and IGS 300-s-interval clock products were used and by 19.1% and 19.4% when the 900-s-interval clock products were used. Furthermore, the disturbances during the initial phase of the calculation were also effectively improved.  相似文献   
98.
张宇  孔静  陈明  欧阳琦  段建锋 《宇航学报》2019,40(9):1014-1023
针对嫦娥5T服务舱(CE5T)拓展试验中的绕地大椭圆轨道,分析了轨道动力学演化趋势,通过测轨数据类型组合策略分析了统一S频段测量(USB)和甚长基线干涉测量(VLBI)在定轨中的贡献,得到了百米级的精密定轨精度;针对地月第二平动点(L2)绕飞轨道,分析了地心和月心积分的轨道动力学差异,制定了精密定轨的参数求解策略,得到了百米级的精密定轨精度;针对月球交会对接轨道的特点,选取三种不同的重力场模型定轨,比较了三者在轨道预报和数据拟合的差异,并与嫦娥3号(CE3)环月轨道的定轨精度进行比对,验证了不同重力场的适用范围,从计算精度和效率两方面制定了优化的定轨策略。  相似文献   
99.
During Sun-Earth eclipse seasons, GPS-IIA satellites perform noon, shadow and post-shadow yaw maneuvers. If the yaw maneuvers are not properly taken into account in the orbit determination process, two problems appear: (1) the observations residuals increase since the modeled position of the satellite’s navigation antenna differs from the true position, and (2) the non-conservative forces like solar radiation pressure or Earth radiation pressure are mismodeled due to the wrong orientation of the satellite’s surfaces in space.  相似文献   
100.
Timing group delay (TGD) is an important parameter that affects the positioning performance of global navigation satellite systems (GNSS). The BeiDou navigation satellite system (BDS) broadcasts TGD corrections from B3I frequency to B1I and B2I frequencies, namely TGD1 and TGD2. On July 21, 2017, BDS updated TGD values with a maximum change of more than 4 ns. In this contribution, we explain the motivation for the BDS TGD update, which is due to the systematic bias between narrowly correlated and widely correlated pseudo-ranges in BDS monitoring receivers. To investigate the impact of the updated TGD, BDS signal-in-space range error (SISRE) and user positioning performance regarding single point positioning (SPP) and precise point positioning (PPP) are analyzed. Results show that after the update of TGD, the difference between the new TGD and multi-GNSS experiment (MGEX) differential code bias (DCB) decreases from 1.38 ns to 0.29 ns on TGD1 and from 0.40 ns to 0.25 ns on TGD2. With the contribution of more accurate TGD, the systematic bias of BDS radial SISRE no longer exists, and the overall BDS SISRE also reduces from 1.33 m to 0.87 m on B1I/B2I frequency, from 1.05 m to 0.89 m on B1I frequency, from 0.92 m to 0.91 m on B2I frequency, respectively, which proves the similar precision of BDS TGD and MGEX DCB. One week of statistical results from 28 globally distributed MGEX stations shows that the SPP performance improves on non-B3I frequencies after the TGD update, with a maximum improvement of more than 22% for the B1I/B2I or B1I/B3I combination. The new TGD mainly reduces SPP positioning bias in the East component. The updated TGD also slightly improves the PPP convergence performance for the B1I/B3I combination, but mostly contributes to a more accurate estimation of the receiver clock and ambiguities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号