首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   458篇
  免费   16篇
  国内免费   50篇
航空   150篇
航天技术   315篇
综合类   23篇
航天   36篇
  2023年   16篇
  2022年   5篇
  2021年   22篇
  2020年   18篇
  2019年   20篇
  2018年   20篇
  2017年   5篇
  2016年   7篇
  2015年   9篇
  2014年   25篇
  2013年   28篇
  2012年   26篇
  2011年   33篇
  2010年   21篇
  2009年   38篇
  2008年   42篇
  2007年   21篇
  2006年   16篇
  2005年   17篇
  2004年   7篇
  2003年   19篇
  2002年   7篇
  2001年   8篇
  2000年   8篇
  1999年   7篇
  1998年   11篇
  1997年   14篇
  1996年   12篇
  1995年   9篇
  1994年   14篇
  1993年   6篇
  1992年   4篇
  1991年   2篇
  1990年   3篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
排序方式: 共有524条查询结果,搜索用时 62 毫秒
21.
《中国航空学报》2016,(6):1695-1709
Inertial navigation system/visual navigation system (INS/VNS) integrated navigation is a commonly used autonomous navigation method for planetary rovers. Since visual measurements are related to the previous and current state vectors (position and attitude) of planetary rovers, the performance of the Kalman filter (KF) will be challenged by the time-correlation problem. A state augmentation method, which augments the previous state value to the state vector, is commonly used when dealing with this problem. However, the augmenting of state dimensions will result in an increase in computation load. In this paper, a state dimension reduced INS/VNS integrated nav-igation method based on coordinates of feature points is presented that utilizes the information obtained through INS/VNS integrated navigation at a previous moment to overcome the time rel-evance problem and reduce the dimensions of the state vector. Equations of extended Kalman filter (EKF) are used to demonstrate the equivalence of calculated results between the proposed method and traditional state augmented methods. Results of simulation and experimentation indicate that this method has less computational load but similar accuracy when compared with traditional methods.  相似文献   
22.
Parameterization of dynamical and thermal effects of stationary orographic gravity waves (OGWs) generated by the Earth’s surface topography is incorporated into a numerical model of general circulation of the middle and upper atmosphere. Responses of atmospheric general circulation and characteristics of planetary waves at altitudes from the troposphere up to the thermosphere to the effects of OGWs propagating from the earth surface are studied. Changes in atmospheric circulation and amplitudes of planetary waves due to variations of OGW generation and propagation in different seasons are considered. It is shown that during solstices the main OGW dynamical and heat effects occur in the middle atmosphere of winter hemispheres, where changes in planetary wave amplitudes due to OGWs may reach up to 50%. During equinoxes OGW effects are distributed more homogeneously between northern and southern hemispheres.  相似文献   
23.
The Global Positioning System (GPS) Radio Occultation (RO) technique has global coverage and is capable of generating high vertical resolution temperature profiles of the upper troposphere and lower stratosphere with sub-Kelvin accuracy and long-term stability, regardless of weather conditions. In this work, we take advantage of the anomalously high density of occultation events at the eastern side of the highest Andes Mountains during the initial mission months of COSMIC (Constellation Observing System for Meteorology, Ionosphere and Climate). This region is well-known for its high wave activity. We choose to study two pairs of GPS RO, both containing two occultations that occurred close in time and space. One pair shows significant differences between both temperature profiles. Numerical simulations with a mesoscale model were performed, in order to understand this discrepancy. It is attributed to the presence of a horizontal inhomogeneous structure caused by gravity waves.  相似文献   
24.
Using empirical velocity distributions derived from UVCS and SUMER ultraviolet spectroscopy, we construct theoretical models of anisotropic ion temperatures in the polar solar corona. The primary energy deposition mechanism we investigate is the dissipation of high frequency (10-10000 Hz) ion-cyclotron resonant Alfvén waves which can heat and accelerate ions differently depending on their charge and mass. We find that it is possible to explain the observed high perpendicular temperatures and strong anisotropies with relatively small amplitudes for the resonant waves. There is suggestive evidence for steepening of the Alfvén wave spectrum between the coronal base and the largest heights observed spectroscopically. Because the ion-cyclotron wave dissipation is rapid, even for minor ions like O5+, the observed extended heating seems to demand a constantly replenished population of waves over several solar radii. This indicates that the waves are generated gradually throughout the wind rather than propagated up from the base of the corona. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
25.
温浩  史爱明  鄢荣 《航空学报》2019,40(12):123196-123196
采用边界层理论与斜激波/膨胀波精确算法,建立一种结合Eckert参考温度法和Illingworth-Stewartson变换法优势的边界层权重算法,用于研究超声速黏性楔面边界层位移厚度对斜激波极值规律的影响。分别应用层流Navier-Stokes方程和湍流Navier-Stokes方程的CFD解算器对边界层新模型进行了算例精度评估。在来流马赫数为1.2~2.4和楔面角为3°~20°的范围内,压强比的相对误差小于0.1%。计入层流与湍流边界层影响的理论模型研究表明,边界层影响使得最优马赫数增加;对于层流边界层,最优马赫数增量约为0.001 5~0.003 3;对于湍流边界层,最优马赫数增量约为0.002 8~0.006 1。  相似文献   
26.
It is widely accepted that diffusive shock acceleration is an important process in the heliosphere, in particular in producing the energetic particles associated with interplanetary shocks driven by coronal mass ejections. In its simplest formulation shock acceleration is expected to accelerate ions with higher mass to charge ratios less efficiently than those with lower mass to charge. Thus it is anticipated that the Fe/O ratio in shock-accelerated ion populations will decrease with increasing energy above some energy. We examine the circumstances of five interplanetary shocks that have been reported to have associated populations in which Fe/O increases with increasing energy. In each event, the situation is complex, with particle contributions from other sources in addition to the shock. Furthermore, we show that the Fe/O ratio in shock-accelerated ions can decrease even when the shock is traveling through an Fe-rich ambient ion population. Thus, although shock acceleration of an Fe-rich suprathermal population has been proposed to explain large Fe-rich solar particle events, we find no support for this proposal in these observations.  相似文献   
27.
We have used the technique suggested by Hocking [Hocking, W. A new approach to momentum flux determinations using SKiYMET meteor radars. Ann. Geophys. 23, 2005.] to derive short period wind variances in the 80–100 km region from meteor radar data. We find that these fluctuating winds, assumed to correspond to gravity waves and turbulence, are closely correlated with the vertical shear of the horizontal tidal winds. This close correlation suggests that in situ wind shear may be a major source of gravity waves and turbulence in the MLT. If this is the case, gravity waves generated in the troposphere and propagating up to the MLT region, generally assumed to constitute an important influence on the climatology of the region, may be a less important source of energy and momentum in the 80–100 km region than has been hitherto believed.  相似文献   
28.
The paper presents a physical mechanism of large-scale vortex electric field generation in the ionospheric E- and F-layers. It shows that the planetary-scale, synoptic short-period (from several second to several hours) and fast processes (with propagation velocity higher than 1 km/s) produce a planetary-scale internal vortex electric field. Its value may far exceed that of the dynamo-field generated in the same ionospheric layer by local wind motion. We found, that an ionospheric source of the vortex electric field is spatial inhomogeneity of the geomagnetic field.  相似文献   
29.
In the present work we assess the stable and transient antiparticle content of planetary magnetospheres, and subsequently we consider their capture and application to high delta-v space propulsion. We estimate the total antiparticle mass contained within the Earth’s magnetosphere to assess the expediency of such usage. Using Earth’s magnetic field region as an example, we have considered the various source mechanisms that are applicable to a planetary magnetosphere, the confinement duration versus transport processes, and the antiparticle loss mechanisms. We have estimated the content of the trapped population of antiparticles magnetically confined following production in the exosphere due to nuclear interactions between high energy cosmic rays (CR) and constituents of the residual planetary upper atmosphere.The galactic antiprotons that directly penetrate into the Earth’s magnetosphere are themselves secondary by its nature, i.e. produced in nuclear reactions of the cosmic rays passing through the interstellar matter. These antiproton fluxes are modified, dependent on energy, when penetrating into the heliosphere and subsequently into planetary magnetospheres. During its lifetime in the Galaxy, CR pass through the small grammage of the interstellar matter where they produce secondary antiprotons. In contrast to this, antiprotons generated by the same CR in magnetosphere are locally produced at a path length of several tens g/cm2 of matter in the ambient planetary upper atmosphere. Due to the latter process, the resulting magnetically confined fluxes significantly exceed the fluxes of the galactic antiprotons in the Earth’s vicinity by up to two orders of magnitude at some energies.The radiation belt antiparticles can possibly be extracted with an electromagnetic-based “scoop” device. The antiparticles could be concentrated by and then stored within the superimposed magnetic field structure of such a device. In future developments, it is anticipated that the energy of the captured antiparticles (both rest energy and kinetic energy) can be adapted for use as a fuel for propelling spacecraft to high velocities for remote solar system missions.  相似文献   
30.
For the case of Tycho’s supernova remnant (SNR), we present the relation between the blast wave and contact discontinuity radii calculated within the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is demonstrated that these radii are confirmed by recently published Chandra measurements which show that the observed contact discontinuity radius is very close to the shock radius. Therefore a consistent explanation of these observations can be given in terms of efficient CR acceleration which makes the medium more compressible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号