首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyse the results of recent measurements of nonthermal emission from individual supernova remnants (SNRs) and their correspondence to the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is shown that the theory fits these data in a satisfactory way and provides the strong evidences for the efficient CR production in SNRs accompanied by significant magnetic field amplification. Magnetic field amplification leads to considerable increase of CR maximum energy so that the spectrum of CRs accelerated in SNRs is consistent with the requirements for the formation of Galactic CR spectrum up to the energy ∼1017 eV.  相似文献   

2.
A statistical study of acceleration and its error of coronal mass ejections (CMEs) observed by the Large Angle Spectrometric Coronagraph (LASCO) is performed. A total of 5594 CMEs events have been analyzed by using a least-square method and using the error in the height measures. We verify that slower CMEs (velocities in the interval from 200 to 500 km s−1) tend to have a positive acceleration (about 1 m s−2) at heights above 5 solar radii, while less than 10% CMEs show an average negative acceleration (about −2.2 m s−2) as they propagate from 5 to 30 solar radii. For most individual CMEs one can not say if they are accelerated or decelerated, only for 8% of all observed CMEs events one can extract the sign of the acceleration in the 5–30 solar radii.  相似文献   

3.
Observations show that the magnetic field in young supernova remnants (SNRs) is significantly stronger than can be expected from the compression of the circumstellar medium (CSM) by a factor of four expected for strong blast waves. Additionally, the polarization is mainly radial, which is also contrary to expectation from compression of the CSM magnetic field. Cosmic rays (CRs) may help to explain these two observed features. They can increase the compression ratio to factors well over those of regular strong shocks by adding a relativistic plasma component to the pressure, and by draining the shock of energy when CRs escape from the region. The higher compression ratio will also allow for the contact discontinuity, which is subject to the Rayleigh–Taylor (R–T) instability, to reach much further out to the forward shock. This could create a preferred radial polarization of the magnetic field. With an Adaptive Mesh Refinement MHD code (AMRVAC), we simulate the evolution of SNRs with three different configurations of the initial CSM magnetic field, and look at two different equations of state in order to look at the possible influence of a CR plasma component. The spectrum of CRs can be simulated using test particles, of which we also show some preliminary results that agree well with available analytical solutions.  相似文献   

4.
We analyse the results of the nonlinear kinetic theory of cosmic ray (CR) acceleration in supernova remnants (SNRs) in order to describe their relevant properties: the remnant dynamics and the characteristics of nonthermal emission produced by CRs. It is shown that the theory fits the existing data in a satisfactory way and that the magnetic field in SNRs is significantly amplified due to efficient acceleration of the nuclear CR component. From the fact that magnetic field amplification occurs in all the young SNRs for which relevant data exist, and given the strong theoretical connection between magnetic field amplification and efficiently accelerating the nuclear CRs, we tentatively conclude that the Galactic SNRs are the source population of the Galactic CRs. Due to high interior magnetic fields in young SNRs the π0-decay γ-rays generated by the nuclear CR component as a rule dominate over γ-rays generated by the electron CR component, and the calculated γ-ray flux fits existing data.  相似文献   

5.
The discovery of direct evidences for the acceleration of high energetic particles at the shell supernova remnant RXJ1713.7-3946 underlined the need to calculate the cosmic ray (CR) distribution in the Galaxy on a spatial grid fine enough to resolve the changes in the CR density due to these kind of objects. It was shown before by Büsching et al. [Büsching, I., Kopp, A., Pohl, M., Schlickeiser, R., Perrot, C., Grenier, I. Cosmic-ray propagation properties for an origin in supernova remnants. ApJ 619, 314–326, 2005] that the discrete nature (both in space and time) of super novae (SN) as sources of Galactic CR leads to CR spectra changing in space and time, resulting in a range of possible CR spectra at a given location in the Galaxy. As the most frequent SN types Ib and II are found within spiral arms, one can expect a significant difference of the range of possible spectra in and outside spiral arms. We investigate the variability of the local interstellar CR proton spectrum during the motion of the Sun in and out of spiral arms in its journey around the Galactic center. Using the code described by Büsching et al. [Büsching, I., Kopp, A., Pohl, M., Schlickeiser, R., Perrot, C., Grenier, I. Cosmic-ray propagation properties for an origin in supernova remnants. ApJ 619, 314–326, 2005], the proton CR density in the Galaxy is calculated with high spatial and temporal resolution (75 pc in galactocentric radius r and azimuth φ at the position of the Sun and 20 pc in z (perpendicular to the galactic plane), with a time step of 1 kyr), assuming stochastically distributed point sources with a probability distribution that resembles the spiral structure of our Galaxy. We find the averaged CR flux outside the spiral arm to be about 50% of that inside a spiral arm. We further find spatial and temporal variations of the CR flux inside spiral arms.  相似文献   

6.
The asymmetric shape of the nebula around η-Carinae (Homunculus) can be explained by a spherical expansion in a non-homogeneous medium. Two models are analyzed: an exponential and an inverse power law dependence for the density as a function of distance from the equatorial plane. The presence of a medium with variable density along the polar direction progressively converts the original spherical shell into a bipolar nebula. In the case of the nebula around η-Carinae, we know the time elapsed since the great outburst in 1840. An exact match between observed radii and velocities can be obtained by fine tuning the parameters involved, such as initial radius, initial velocity and the typical scale that characterizes the gradient in density. The observed radius and velocity of the Homunculus as a function of the polar angle in spherical coordinates can be compared with the corresponding simulated data by introducing the efficiency in a single or multiple directions. Once the 3D spatial structure of the Homunculus is obtained, we can compose the image by integrating along the line of sight. In order to simulate the observed image, we have considered a bipolar nebula with constant thickness and an optically thin emitting layer. Some simulated cuts of the relative intensity are reported and may represent a useful reference for the astronomical cuts.  相似文献   

7.
We build a single vertical straight magnetic fluxtube spanning the solar photosphere and the transition region which does not expand with height. We assume that the fluxtube containing twisted magnetic fields is in magnetohydrostatic equilibrium within a realistic stratified atmosphere subject to solar gravity. Incorporating specific forms of current density and gas pressure in the Grad–Shafranov equation, we solve the magnetic flux function, and find it to be separable with a Coulomb wave function in radial direction while the vertical part of the solution decreases exponentially. We employ improved fluxtube boundary conditions and take a realistic ambient external pressure for the photosphere to transition region, to derive a family of solutions for reasonable values of the fluxtube radius and magnetic field strength at the base of the axis that are the free parameters in our model. We find that our model estimates are consistent with the magnetic field strength and the radii of Magnetic bright points (MBPs) as estimated from observations. We also derive thermodynamic quantities inside the fluxtube.  相似文献   

8.
A short history of the beginning of cosmic ray (CR) astrophysics is considered: from the hypothesis on CR origin as a result of Supernova explosions in the Metagalaxy, to a model of solar origin of CR, galactic origin based on the stochastic mechanism of charged particle acceleration in interstellar space, to extragalactic and hierarchical models of CR origin, as well as galactic CR origin taking into account radio-astronomical data. We consider also the first balloon results on the chemical contents of primary CR (especially of the contents Li, Be, B), important for any model of CR origin. Investigations of the injection problem, CR drift and diffusion acceleration by shock waves, and CR generation in Supernova remnants were also important steps in the beginning of CR astrophysics.  相似文献   

9.
We describe an alternate way to estimate Broad Line Region (BLR) radii for type-1 AGN based on determination of physical conditions in the BLR under the assumption that the line emitting gas is photoionized by a central continuum source. We derive “diagnostic” intensity ratios involving UV lines Aliiiλλ1860, Siiii]λλ1892 and Civλλ1549 which enable us to compute the ionizing photon flux, and hence BLR radius from the ionization parameter definition. We compare our estimates of BLR radii with values independently obtained from reverberation monitoring of Hββ and, in a few cases, of C ivλλ1549. We analyze the interpretation of the photoionization estimates in the 4D eigenvector 1 context, and discuss in some detail the case of 3C 390.3. For this object we are able to provide not only the ionizing photon flux, but also an estimate of density and ionization parameter from the measured diagnostic ratios. We also compare black hole masses obtained from this method with values derived from widely-applied correlations between mass, line broadening and luminosity. Good agreement is found for both radius and black hole mass comparisons.  相似文献   

10.
Data from coronal radio-sounding experiments carried out on various interplanetary spacecraft are used to derive the empirical radial dependence of solar wind velocity and density at heliocentric distances from 3 to 60 solar radii for heliolatitudes below 60° and for low solar activity. The radial dependencies of solar wind power and acceleration are derived from these results. Summaries of the radial behavior of characteristic parameters of the solar wind turbulence (e.g., the spectral index and the inner and outer turbulence scales), as well as the fractional density fluctuation, are also presented. These radio-sounding results provide a benchmark for models of the solar wind in its acceleration region.  相似文献   

11.
The Voyager observations of electrical discharges in Saturn's rings strongly support earlier speculations on the role played by electrostatics, magnetic fields, and lightning phenomena in the primitive solar system. They also suggest conditions then by direct analogy rather than by extrapolating backwards through time from conditions now. The observed discharges show a pronounced 10h periodicity, which suggests a source in Keplerian orbit at 1.80 ± 0.01 Saturn radii (1 RS = 60,330 km). In that region, the B ring is thicker than optical depth 1.8 for about 5,000 km. At 1.805 ± 0.001 Saturn radii, however, the ring is virtually transparent for a gap of width 200 m. We conclude that a small satellite orbits Saturn at that radius and clears the gap. The gap edges must prevent diffusive filling of the gap by fine material which is especially abundant at this position in the rings and would otherwise destroy the gap in minutes. The discharges represent the satellite's interaction with the outer edge of the gap. Spoke formation may involve the interaction of ring material in the vicinity of the gap.  相似文献   

12.
Based upon the most efficient electron acceleration near the midplane of 3D non-neutral driven reconnecting current sheet (RCS) and the electrostatic wave excitation by the drift Maxwellian distribution of electrons in Vlasov simulation, we assume that the electrostatic waves mainly propagate opposite to the reconnecting electric field and investigated how these waves affect the electron acceleration. The main results are: (1) when the electron’s velocity equals to the phase speed of the waves, they will be trapped and have the different accelerating characteristics from the untrapped electrons through solving the momentum equations of electrons analytically; (2) the test particle simulations further prove that the number of the energetic electrons decreases with the increasing intensity of unstable waves, and the distribution of the energetic electrons takes on the double power-law.  相似文献   

13.
The cylindrical column of brittle material processed from soil and rock is a fundamental component of architectures on the surface of solid bodies in the solar system. One of the most hazardous events for the structure is damaging by hypervelocity impacts by meteoroids and debris. In such a background, cylindrical columns made of plaster of Paris and glass-bead-sintered ceramic were impacted by spherical projectiles of nylon, glass, and steel at velocity of about 1–4.5 km/s. Measured crater radii, depth, and excavated mass expressed by a function of the cylinder radius are similar irrespective of the target material, if those parameters are normalized by appropriate parameters of the crater produced on the flat-surface target. The empirical scaling relations of the normalized crater radii and depth are provided. Using them, crater dimensions and excavated mass of crater on cylindrical surface of any radius can be predicted from the existing knowledge of those for flat surface. Recommendation for the minimum diameter of a cylinder so as to resist against a given impact is provided.  相似文献   

14.
We present observations of a C9.4 flare on 2002 June 2 in EUV (TRACE) and X-rays (RHESSI). The multiwavelength data reveal: (1) the involvement of a quadrupole magnetic configuration; (2) loop expansion and ribbon motion in the pre-impulsive phase; (3) gradual formation of a new compact loop with a long cusp at the top during the impulsive phase of the flare; (4) appearance of a large, twisted loop above the cusp expanding outward immediately after the hard X-ray peak; and (5) X-ray emission observed only from the new compact loop and the cusp. In particular, the gradual formation of an EUV cusp feature is very clear. The observations also reveal the timing of the cusp formation and particle acceleration: most of the impulsive hard X-rays (>25 keV) were emitted before the cusp was seen. This suggests that fast reconnection occurred during the restructuring of the magnetic configuration, resulting in more efficient particle acceleration, while the reconnection slowed after the cusp was completely formed and the magnetic geometry was stabilized. This observation is consistent with the observations obtained with Yohkoh/Soft X-ray Telescope (SXT) that soft X-ray cusp structures only appear after the major impulsive energy release in solar flares. These observations have important implications for the modeling of magnetic reconnection and particle acceleration.  相似文献   

15.
The Space Weather Explorer – KuaFu mission will provide simultaneous, long-term, and synoptic observations of the complete chain of disturbances from the solar atmosphere to the geospace. KuaFu-A (located at the L1 liberation point) includes Coronal Dynamics Imagers composed of a Lyman-α coronagraph (from 1.15 to 2.7 solar radii) and a white light coronagraph (out to 15 solar radii), in order to identify the initial sources of Coronal Mass Ejections (CMEs) and their acceleration profiles. The difficulty of observing the lower corona should not be underestimated since instrumental stray light remains a critical issue in the visible because of the low contrast of the corona with respect to the Sun. Observing the corona in the Lyman-α line is a valid alternative to white light observations. This approach takes advantage of both the intrinsic higher contrast of the corona with respect to the solar disk in this line compared to the visible, and the absence of F-corona at 121.6 nm. Furthermore, it has been convincingly shown that the coronal structures seen in Lyman-α correspond to those seen in the visible and which result from Thomson scattering of the coronal ionized gas. This is because the plasma is still collisional in the lower corona so that the hydrogen neutral atoms are coupled to the protons. A classical, all-reflecting internally-occulted Lyot coronagraph is required so as to preserve the image quality down to the inner limit of the field-of-view. A narrow band interference filter located in a collimated beam allows isolating the Lyman-α line. The visible coronagraph will adopt the approach of a single instrument having a large field-of-view extending from 2.5 to 15 solar radii. Such a design is based on refractive externally-occulted coronagraphs built for recent past missions, essentially the LASCO-C2 and C3 instruments and the SECCHI/COR 2 of the STEREO mission, which is itself a combination of the C2 and C3 instruments.  相似文献   

16.
In this work we present height-time diagrams of 2 halo coronal mass ejections, observed on September 28th, 1997 and June 29th, 1999. The CMEs were observed by the Large Angle and Spectroscopic Coronagraph (LASCO), which observes the solar corona from 2 to 32 solar radii. To obtain these diagrams we divide the LASCO images of a given sequence in angular slices, transform them into rectangular slices (their width chosen proportional to the time distance to the next image) and place them side by side. Thus, the speed profile of any pattern moving in the particular latitudinal slice can be derived. With this method we were able to identify even minor speed changes in several angular positions for the chosen events. This technique is particularly appropriate to identify acceleration or deceleration of structures in halo CMEs.  相似文献   

17.
The electric properties of pulsar’s inner annular gap are explored in this paper. Under two main assumptions, (1) the pulsar is alive, (2) the total charge of pulsar should not vary with time, the condition for the acceleration of negative particle in the annular region is derived. The acceleration condition is j ? 0.5j+, i.e., the current carried by negative particles is greater than or equal to 0.5 times of the current carried by positive particles. This condition holds even when the backward flow of positive particles exists in the annular region. It is noted that the outflow of negative particles offers good opportunities to understand the current closure problem of pulsar as well as wide radiation beam of pulsar observed at high energy band.  相似文献   

18.
在添加动量项的条件下,对单流体二维磁流体力学方程组进行模拟,得到了子午面上的太阳风结构,结果表明,添加动量项的形式及其被加入的位置对远区太阳风速度和质子密度有重要的影响。本文在适当的区域加入合适的动量项得出了远区太阳风速和质子密度与Ulysses观测基本符合的结果。文中给出了较合适的动量添加区域为3.5-10Rs(Rs为太阳半径)。  相似文献   

19.
Measurement of at least three independent parameters, for example, mass, radius and spin frequency, of a neutron star is probably the only way to understand the nature of its supranuclear core matter. Such a measurement is extremely difficult because of various systematic uncertainties. The lack of knowledge of several system parameter values gives rise to such systematics. Low mass X-ray binaries, which contain neutron stars, provide a number of methods to constrain the stellar parameters. Joint application of these methods has a great potential to significantly reduce the systematic uncertainties, and hence to measure three independent neutron star parameters accurately. Here, we review the methods based on: (1) thermonuclear X-ray bursts; (2) accretion-powered millisecond-period pulsations; (3) kilohertz quasi-periodic oscillations; (4) broad relativistic iron lines; (5) quiescent emissions; and (6) binary orbital motions.  相似文献   

20.
The Radio Observatory on the Lunar Surface for Solar studies (ROLSS) is a concept for a near-side low radio frequency imaging interferometric array designed to study particle acceleration at the Sun and in the inner heliosphere. The prime science mission is to image the radio emission generated by Type II and III solar radio burst processes with the aim of determining the sites at and mechanisms by which the radiating particles are accelerated. Specific questions to be addressed include the following: (1) Isolating the sites of electron acceleration responsible for Type II and III solar radio bursts during coronal mass ejections (CMEs); and (2) Determining if and the mechanism(s) by which multiple, successive CMEs produce unusually efficient particle acceleration and intense radio emission. Secondary science goals include constraining the density of the lunar ionosphere by searching for a low radio frequency cutoff to solar radio emission and constraining the low energy electron population in astrophysical sources. Key design requirements on ROLSS include the operational frequency and angular resolution. The electron densities in the solar corona and inner heliosphere are such that the relevant emission occurs at frequencies below 10 MHz. Second, resolving the potential sites of particle acceleration requires an instrument with an angular resolution of at least 2°, equivalent to a linear array size of approximately 1000 m. Operations would consist of data acquisition during the lunar day, with regular data downlinks. No operations would occur during lunar night.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号