首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   349篇
  免费   8篇
  国内免费   46篇
航空   134篇
航天技术   231篇
综合类   23篇
航天   15篇
  2023年   11篇
  2022年   4篇
  2021年   14篇
  2020年   13篇
  2019年   16篇
  2018年   17篇
  2017年   3篇
  2016年   5篇
  2015年   7篇
  2014年   15篇
  2013年   15篇
  2012年   20篇
  2011年   23篇
  2010年   15篇
  2009年   33篇
  2008年   28篇
  2007年   14篇
  2006年   16篇
  2005年   16篇
  2004年   3篇
  2003年   19篇
  2002年   7篇
  2001年   8篇
  2000年   6篇
  1999年   7篇
  1998年   10篇
  1997年   13篇
  1996年   10篇
  1995年   8篇
  1994年   12篇
  1993年   5篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
排序方式: 共有403条查询结果,搜索用时 15 毫秒
21.
For the case of Tycho’s supernova remnant (SNR), we present the relation between the blast wave and contact discontinuity radii calculated within the nonlinear kinetic theory of cosmic ray (CR) acceleration in SNRs. It is demonstrated that these radii are confirmed by recently published Chandra measurements which show that the observed contact discontinuity radius is very close to the shock radius. Therefore a consistent explanation of these observations can be given in terms of efficient CR acceleration which makes the medium more compressible.  相似文献   
22.
We study the heliocentric evolution of ICME-like disturbances and their associated transient forward shocks (TFSs) propagating in the interplanetary (IP) medium comparing the solutions of a hydrodynamic (HD) and magnetohydrodynamic (MHD) models using the ZEUS-3D code [Stone, J.M., Norman, M.L., 1992. Zeus-2d: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. i – the hydrodynamic algorithms and tests. Astrophysical Journal Supplement Series 80, 753–790]. The simulations show that when a fast ICME and its associated IP shock propagate in the inner heliosphere they have an initial phase of about quasi-constant propagation speed (small deceleration) followed, after a critical distance (deflection point), by an exponential deceleration. By combining white light coronograph and interplanetary scintillation (IPS) measurements of ICMEs propagating within 1 AU [Manoharan, P.K., 2005. Evolution of coronal mass ejections in the inner heliosphere: a study using white-light and scintillation images. Solar Physics 235 (1–2), 345–368], such a critical distance and deceleration has already been inferred observationally. In addition, we also address the interaction between two ICME-like disturbances: a fast ICME 2 overtaking a previously launched slower ICME 1. After interaction, the leading ICME 1 accelerates and the tracking ICME 2 decelerates and both ICMEs tend to arrive at 1 AU having similar speeds. The 2-D HD and MHD models show similar qualitative results for the evolution and interaction of these disturbances in the IP medium.  相似文献   
23.
Two orbits were selected in January–February 2006 when the separation between the Cluster spacecraft was large and mirror type magnetic field fluctuations were observed by all spacecraft in different regions of the terrestrial magnetosheath. Minimum variance analysis was applied to find the mirror type fluctuations, and the amplitude of the fluctuations was determined individually. Mirror mode structures are moving along the streamlines frozen in the plasma. A model was developed for the calculation of plasma flowtime from the bow shock to the observation point. The growth rate of the field strength perturbations was estimated by comparing the amplitudes of fluctuations observed simultaneously at distant locations (∼10,000 km) based on the assumption that δB ∼ exp(γt). The obtained growth rate values were about an order of magnitude smaller than those provided by linear models and they decreased in the inner regions of the magnetosheath, indicating some saturation in the growth of the waves when proceeding towards the magnetopause. The results of these two case studies suggest that mirror type fluctuations originate from the compression region downstream of the quasi-perpendicular bow shock, and the growth of the fluctuations cannot be described by linear approximations.  相似文献   
24.
Auroral emission caused by electron precipitation (Hardy et al., 1987, J. Geophys. Res. 92, 12275–12294) is powered by magnetospheric driving processes. It is not yet fully understood how the energy transfer mechanisms are responsible for the electron precipitation. It has been proposed (Hasegawa, 1976, J. Geophys. Res. 81, 5083–5090) that Alfvén waves coming from the magnetosphere play some role in powering the aurora (Wygant et al., 2000, J. Geophys. Res. 105, 18675–18692, Keiling et al., 2003, Science 299, 383–386). Alfvén-wave-induced electron acceleration is shown to be confined in a rather narrow radial distance range of 4–5 R E (Earth radii) and its importance, relative to other electron acceleration mechanisms, depends strongly on the magnetic disturbance level so that it represents 10% of all electron precipitation power during quiet conditions and increased to 40% during disturbed conditions. Our observations suggest that an electron Landau resonance mechanism operating in the “Alfvén resonosphere” is responsible for the energy transfer.  相似文献   
25.
针对高超声速飞行器中存在的强激波、激波/边界层干扰、分离、湍流等复杂流动现象,对比分析了当前计算流体力学中的主要空间离散格式及湍流模型,发现不同格式对强激波的分辨率基本相同,Roe和LDE(low diffusion E-CUSP(convective upwind split pressure))格式对摩擦因数和传热系数的模拟优于其他格式;S-A(Spalart-Allmaras)一方程湍流模型计算的摩擦因数比k-ωSST(shear stress transport)两方程湍流模型高10%左右,而后者预测的分离区约为前者的2倍,且分离点靠前.  相似文献   
26.
温度对液体中超声速度的影响   总被引:4,自引:0,他引:4  
本文导出了超声波速度同液体压缩系数及密度关系,研究了压缩系数及密度与温度的关系,进而研究了温度对声速及声时的影响,用实验测量了不同的液体成份下的声时同温度的关系,从而提出了进行液体成份分析所必需的参量,对用超声波分析液体成份提供了理论依据,对提高产品质量及实现工业在线检测有一定的实用价值。  相似文献   
27.
There are a lot of objects in space associated with dusty plasma inclusions. Such inclusions may bear a prolonged shape and behave as waveguides for ion-sound waves. In the case of space plasmas, the dust particles can possess both negative charge, due to electron attachment, and positive one, due to photoionization. In this paper the propagation of linear and non-linear ion-sound wave pulses in the dusty plasma waveguides, possessing positive charge, is studied. It has been demonstrated that non-linear dynamics of baseband pulse propagation in plasma waveguide possesses essentially non-solitonic behavior. Namely, propagation of a long ion-sound pulse leads to an excitation of a shock-like wave but not a stable localized nonlinear pulse. Also, when a Korteveg–de Vries (KdV) soliton is incident onto the dusty plasma waveguide, some part of the soliton energy is captured by the waveguide and transformed into a multi-pulse structure. Additionally, an interaction of dusty plasma inclusions with KdV soliton can lead to the occurrence of transverse instabilities of the soliton and its eventual destruction.  相似文献   
28.
The height–season and year-to-year regularities of parameters of first and second spatial harmonics determine the structure of the stratosphere and mesosphere circulation and its variability. In the period 1992–2002 at heights 0–55 km, the amplitudes and phases of the first and second spatial harmonics in the field of temperature, geopotential height, zonal and meridional wind were calculated by the method of harmonic decomposition. Dispersion (standard or mean square deviation) of their day-to-day and year-to-year variations was calculated by their wavelength constants. Height and season patterns of variability have been estimated. The difference in height–longitude variability for wave numbers m = 1 and 2 has been discovered. At the same time, the intensity of wave disturbances for m = 1 is less than for m = 2 excluding the polar areas, where a significant variability appears at the heights 0–55 km. There is also a tendency for the intensity of year-to-year variations to decrease in comparison with day-to-day variations. In cold and warm periods the amplitude of perturbation waves with m = 2 both for day-to-day and year-to-year variations is greater than for waves with m = 1. Transient height areas in the interval of 20–30 km are more distinct for day-to-day variations of polar area.  相似文献   
29.
Voitenko  Yuriy  Goossens  Marcel 《Space Science Reviews》2003,107(1-2):387-401
We study kinetic excitation mechanisms for high-frequency dispersive Alfvén waves in the solar corona, solar wind, and Earth's magnetosphere. The ion-cyclotron and Cherenkov kinetic effects are important for these waves which we call the ion-cyclotron kinetic Alfvén waves (ICKAWs). Ion beams, anisotropic particles distributions and currents provide free energy for the excitation of ICKAWs in space plasmas. As particular examples we consider ICKAW instabilities in the coronal magnetic reconnection events, in the fast solar wind, and in the Earth's magnetopause. Energy conversion and transport initiated by ICKAW instabilities is significant for the whole dynamics of Sun-Earth connection chain, and observations of ICKAW activity could provide a diagnostic/predictive tool in the space environment research. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
30.
A two-fluid model is used to study the time evolution of stellar winds including the dynamical effect of cosmic rays. Neglecting the diffusion of cosmic rays, we seek self-similar solutions to spherically symmetric winds with a termination shock. The velocity upstream of the shock is taken to be zero. Physical solutions are those that can connect the shock to the star with the velocity approaching zero at the star. Two parameters govern the behaviour of the solutions, namely, the ratio of the upstream sound speed to the shock speed (in an inertial frame) and the gravitation potential of the central star. In some parameter regimes, no physical solution is possible.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号