首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   27篇
  国内免费   115篇
航空   183篇
航天技术   60篇
综合类   12篇
航天   58篇
  2024年   1篇
  2023年   7篇
  2022年   15篇
  2021年   21篇
  2020年   21篇
  2019年   8篇
  2018年   12篇
  2017年   10篇
  2016年   9篇
  2015年   17篇
  2014年   22篇
  2013年   18篇
  2012年   8篇
  2011年   19篇
  2010年   19篇
  2009年   12篇
  2008年   9篇
  2007年   7篇
  2006年   15篇
  2005年   7篇
  2004年   9篇
  2003年   9篇
  2002年   2篇
  2001年   6篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1993年   1篇
  1989年   3篇
  1988年   2篇
  1985年   2篇
排序方式: 共有313条查询结果,搜索用时 31 毫秒
61.
This paper proposes a fault-tolerant strategy for hypersonic reentry vehicles with mixed aerodynamic surfaces and reaction control systems (RCS) under external disturbances and subject to actuator faults. Aerodynamic surfaces are treated as the primary actuator in normal situations, and they are driven by a continuous quadratic programming (QP) allocator to generate torque com-manded by a nonlinear adaptive feedback control law. When aerodynamic surfaces encounter faults, they may not be able to provide sufficient torque as commanded, and RCS jets are activated to augment the aerodynamic surfaces to compensate for insufficient torque. Partial loss of effective-ness and stuck faults are considered in this paper, and observers are designed to detect and identify the faults. Based on the fault identification results, an RCS control allocator using integer linear programming (ILP) techniques is designed to determine the optimal combination of activated RCS jets. By treating the RCS control allocator as a quantization element, closed-loop stability with both continuous and quantized inputs is analyzed. Simulation results verify the effectiveness of the proposed method.  相似文献   
62.
This paper presents a computationally efficient real-time trajectory planning framework for typical unmanned combat aerial vehicle (UCAV) performing autonomous air-to-surface (A/S) attack. It combines the benefits of inverse dynamics optimization method and receding horizon optimal control technique. Firstly, the ground attack trajectory planning problem is mathematically formulated as a receding horizon optimal control problem (RHC-OCP). In particular, an approximate elliptic launch acceptable region (LAR) model is proposed to model the critical weapon delivery constraints. Secondly, a planning algorithm based on inverse dynamics optimization, which has high computational efficiency and good convergence properties, is developed to solve the RHCOCP in real-time. Thirdly, in order to improve robustness and adaptivity in a dynamic and uncer- tain environment, a two-degree-of-freedom (2-DOF) receding horizon control architecture is introduced and a regular real-time update strategy is proposed as well, and the real-time feedback can be achieved and the not-converged situations can be handled. Finally, numerical simulations demon- strate the efficiency of this framework, and the results also show that the presented technique is well suited for real-time implementation in dynamic and uncertain environment.  相似文献   
63.
Purpose of the present study is to provide algorithms for and examples of how to simulate star visibility and tracking by a Telescope attached to the main truss of the International Space Station (ISS).  相似文献   
64.
Friction Stir Welding (FSW) is a relatively nascent solid state joining technique developed at The Welding Institute (TWI) in 1991. The process was first used at NASA to weld the super lightweight external tank for the Space Shuttle. Today FSW is used to join structural components of the Delta IV, Atlas V, and Falcon IX rockets as well as the Orion Crew Exploration Vehicle. A current focus of FSW research is to extend the process to new materials which are difficult to weld using conventional fusion techniques. Metal Matrix Composites (MMCs) consist of a metal alloy reinforced with ceramics and have a very high strength to weight ratio, a property which makes them attractive for use in aerospace and defense applications. MMCs have found use in the space shuttle orbiter's structural tubing, the Hubble Space Telescope's antenna mast, control surfaces and propulsion systems for aircraft, and tank armors. The size of MMC components is severely limited by difficulties encountered in joining these materials using fusion welding. Melting of the material results in formation of an undesirable phase (formed when molten Aluminum reacts with the reinforcement) which leaves a strength depleted region along the joint line. Since FSW occurs below the melting point of the workpiece material, this deleterious phase is absent in FSW-ed MMC joints. FSW of MMCs is, however, plagued by rapid wear of the welding tool, a consequence of the large discrepancy in hardness between the steel tool and the reinforcement material. This work characterizes the effect of process parameters (spindle speed, traverse rate, and length of joint) on the wear process. Based on the results of these experiments, a phenomenological model of the wear process was constructed based on the rotating plug model for FSW. The effectiveness of harder tool materials (such as Tungsten Carbide, high speed steel, and tools with diamond coatings) to combat abrasive wear is explored. In-process force, torque, and vibration signals are analyzed to assess the feasibility of on-line monitoring of tool shape changes as a result of wear (an advancement which would eliminate the need for off-line evaluation of tool condition during joining). Monitoring, controlling, and reducing tool wear in FSW of MMCs is essential to the implementation of these materials in structures (such as launch vehicles) where they would be of maximum benefit.  相似文献   
65.
张威  刘新杰  刘艳  王文波  张博利 《航空学报》2020,41(9):423559-423559
为研究扑翼飞行器传动机构的能量特性,以特拉华大学机械系统实验室所研制样机为原型进行了建模。引入气动项和拉力弹簧建立了完整的动力学模型。分析发现,气动项的力矩峰值为惯性项的4.8倍,对电机的转矩峰值的影响起主要作用。运用正交法进行仿真发现,引入拉力弹簧可以使电机转矩峰值最大降低77.5%,与理论分析相符合。进一步的物理实验验证了理论分析和仿真结果的正确性,并得到了当弹簧的连接点位置为185 mm、原长为200 mm及刚度为0.1 N/mm时实验结果取得最优值,可为扑翼机传动机构的优化设计提供依据。此外,引入弹性元件也可有效降低电机的转速波动,进而为仿生扑翼飞行器的生产和实践应用提供理论指导。  相似文献   
66.
Intensive studies have been carried out on generations of waverider geometry and hypersonic inlet geometry. However, integration efforts of waverider and related air-intake system are restricted majorly around the X43A-like or conical flow field induced configuration, which adopts mainly the two-dimensional air-breathing technology and limits the judicious visions of developing new aerodynamic profiles for hypersonic designers. A novel design approach for integrating the inward turning inlet with the traditional parameterized waverider is proposed. The proposed method is an alternative means to produce a compatible configuration by linking the off-the-shelf results on both traditional waverider techniques and inward turning inlet techniques. A series of geometry generations and optimization solutions is proposed to enhance the lift-to-drag ratio. A quantitative but efficient aerodynamic performance evaluation approach (the hypersonic flow panel method) with lower computational cost is employed to play the role of objective function for opti- mization purpose. The produced geometry compatibility with a computational fluid dynamics (CFD) solver is also verified for detailed flow field investigation. Optimization results and other numerical validations are obtained for the feasibility demonstration of the proposed method.  相似文献   
67.
 本文概述了新型航空航天飞行器概念研究的目的、内容和方法。并介绍了适用于概念研究的系统分析程序,其中着重介绍程序接口和分析程序的发展情况,此外还对新型航空航天飞行器概念研究的主要结果作了简要的评述。  相似文献   
68.
An analysis of the orbital evolution of the ESA's Hipparcos satellite is presented. Hipparcos operated between August 1989 and March 1993 in a highly elliptical orbit: a geostationary transfer orbit with increased perigee height. The requirements of the scientific mission included high accuracy knowledge of the position and velocity vectors of the spacecraft as a function of time. Through a study of the variations in the total orbital energy, the loss of energy during the mission as a result of non-conservative forces is recovered. These are explained as largely due to atmospheric drag during perigee passages. Apparent variations in the drag coefficient are in agreement with orientation variations of the satellite during those perigee passages. Two different models used for calculating the atmospheric drag give significantly different results, confirming earlier findings by other users of those models. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
69.
通过求解薄层近似的Navier-Stokes方程,数值模拟了带座舱飞船高超声速粘性绕流,首次系统地给出了攻角为5°、10°、20°、30°和40°情况下的物面分离形态、横戴面流线形态、纵剖面流线形态以及旋涡沿涡轴的演变形态。分析和比较表明,本文采用数值可视化方法给出的流场拓扑结构与相应的拓扑规律完全吻合。在飞船后体流场横截面流线中,本文发现了稳定的极限环流态,该极限环涡心处沿涡轴方向的速度是超声速  相似文献   
70.
QNX作为嵌入式实时操作系统之一,它具有强实时、高可靠性、可剪裁、可配置、可扩充、可移植的特点,支持主流嵌入式处理器,目前主要应用在军事武器装备和航空航天领域.本文从航空电子系统对实时操作系统的要求出发,着重介绍了嵌入式实时操作系统QNX在PC104平台上的移植和配置网络连接通信技术,实现了基于QNX的分布式异构仿真平台,并通过实例验证了QNX的实时通信机制,建立了QNX在航空电子系统中应用的雏形,并给出了下一步工作的重点.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号