首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   102篇
  国内免费   52篇
航空   256篇
航天技术   21篇
综合类   19篇
航天   23篇
  2023年   5篇
  2022年   30篇
  2021年   12篇
  2020年   13篇
  2019年   12篇
  2018年   11篇
  2017年   7篇
  2016年   18篇
  2015年   17篇
  2014年   14篇
  2013年   14篇
  2012年   8篇
  2011年   15篇
  2010年   14篇
  2009年   11篇
  2008年   13篇
  2007年   13篇
  2006年   10篇
  2005年   14篇
  2004年   16篇
  2003年   5篇
  2002年   3篇
  2001年   8篇
  2000年   7篇
  1999年   4篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   6篇
  1993年   2篇
  1992年   1篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
排序方式: 共有319条查询结果,搜索用时 248 毫秒
31.
《中国航空学报》2020,33(4):1154-1165
This paper focuses on the effects of external geometrical modifications on the aerodynamic characteristics of the MQ-1 predator Unmanned Combat Aerial Vehicle (UCAV) using computational fluid dynamics. The investigations are performed for 16 flight conditions at an altitude of 7.6 km and at a constant speed of 56.32 m/s. Two models are analysed, namely the baseline model and the model with external geometrical modifications installed on it. Both the models are investigated for various angles of attack from −4° to 16°, angles of bank from 0° to 6° and angles of yaw from 0° to 4°. Due to the unavailability of any experimental (wind tunnel or flight test) data for this UCAV in the literature, a thorough verification of calculations process is presented to demonstrate confidence level in the numerical simulations. The analysis quantifies the loss of lift and increase in drag for the modified version of the MQ-1 predator UCAV along with the identification of stall conditions. Local improvement (in drag) of up to 96% has been obtained by relocating external modifications, whereas global drag force reduction of roughly 0.5% is observed. The effects of external geometrical modifications on the control surfaces indicate the blanking phenomenon and reduction in forces on the control surfaces that can reduce the aerodynamic performance of the UCAV.  相似文献   
32.
Experimental investigation of large amplitude yaw-roll coupled oscillations was conducted in a low-speed wind tunnel using an aircraft configuration model. A special test rig was designed and constructed to provide different coupled motions from low to high angles of attack.A parameter ‘‘coupling ratio" was introduced to indicate the extent of yaw-roll coupling. At each pitch angle, seven coupling ratios were designed to study the yaw-roll coupling effects on the lateraldirectional aerodynamic characteristics systematically. At high angles of attack, the damping characteristics of yawing and rolling moments drastically varied with coupling ratios. In the coupled motions with the rotation taking place about the wind axis, the lateral-directional aerodynamic moments exhibited unsteady characteristics and were different from the ‘‘quasi-steady" results of the rotary balance tests. The calculated results of the traditional aerodynamic derivative method were also compared with the experimental data. At low and very high angles of attack, the aerodynamic derivative method was applicative. However, within a wide range of angles of attack, the calculated results of aerodynamic derivative method were inconsistent with the experimental data, due to the drastic changes of damping characteristics of lateral-directional aerodynamic moments with yaw-roll coupling ratios.  相似文献   
33.
《中国航空学报》2023,36(5):212-222
Variable-sweep wings have large shape-changing capabilities and wide flight envelops, which are considered as one of the most promising directions for intelligent morphing UAVs. Aerodynamic investigations always focus on several static states in the varying sweep process, which ignore the unsteady aerodynamic characteristics. However, deviations to static aerodynamic forces are inevitably caused by dynamic sweep motion. In this work, first, unsteady aerodynamic characteristics on a typical variable-sweep UAV with large aspect ratio were analyzed. Then, deep mechanism of unsteady aerodynamic characteristics in the varying sweep process was studied. Finally, numerical simulation method integrated with structured moving overset grids was applied to solve the unsteady fluid of varying sweep process. The simulation results of a sweep forward-backward circle show a distinct dynamic hysteresis loop surrounding the static data for the aerodynamic forces. Compared with the static lift coefficients , at the same sweep angles, dynamic  lift coefficient in sweep forward process are all smaller, while dynamic sweep backward  lift coefficient are all larger. In addition, dynamic deviations to static  lift coefficient are positively related with the varying sweep speeds. Mechanism study on the unsteady aerodynamic characteristics indicates that three key factors lead to the dynamic hysteresis loop in varying sweep process. They are the effects of additional velocity caused by varying sweep motion, the effects of flow hysteresis and viscosity. The additional velocity induced by sweep motion affects the transversal flow direction along the wing and the effective angle of attack at the airfoil profile. The physical properties of flow, the hysteresis and viscosity affect the unsteady aerodynamic characteristics by flow separation and induced vortexes.  相似文献   
34.
《中国航空学报》2022,35(11):45-58
This paper revisits the Space-Time Gradient (STG) method which was developed for efficient analysis of unsteady flows due to rotor–stator interaction and presents the method from an alternative time-clocking perspective. The STG method requires reordering of blade passages according to their relative clocking positions with respect to blades of an adjacent blade row. As the space-clocking is linked to an equivalent time-clocking, the passage reordering can be performed according to the alternative time-clocking. With the time-clocking perspective, unsteady flow solutions from different passages of the same blade row are mapped to flow solutions of the same passage at different time instants or phase angles. Accordingly, the time derivative of the unsteady flow equation is discretized in time directly, which is more natural than transforming the time derivative to a spatial one as with the original STG method. To improve the solution accuracy, a ninth order difference scheme has been investigated for discretizing the time derivative. To achieve a stable solution for the high order scheme, the implicit solution method of Lower-Upper Symmetric Gauss-Seidel/Gauss-Seidel (LU-SGS/GS) has been employed. The NASA Stage 35 and its blade-count-reduced variant are used to demonstrate the validity of the time-clocking based passage reordering and the advantages of the high order difference scheme for the STG method. Results from an existing harmonic balance flow solver are also provided to contrast the two methods in terms of solution stability and computational cost.  相似文献   
35.
为了研究亚格子模型对泵喷推进器非定常流动与宽带非定常力预报结果的影响,采用分块结构化网格建立了模型尺度下艇后泵喷推进器的计算模型,并进行了大涡模拟数值计算。从艇尾非定常流场特征量和推进器转子脉动载荷两个方面对比了三种不同亚格子模型计算结果的差异,并分析了泵喷内部流动与转子非定常力间的内在联系。研究结果表明:三种亚格子模型均能得到含有叶频宽带峰的轴向推力谱,且整体趋势相近。泵喷转子上游的湍流强度和尺度的分布对亚格子模型较敏感,其中Smargrinsky-Lilly模型得到的湍流强度较强,尺度较大,该模型下的湍流谱在非平衡区量级较大,但由低频向高频的衰减较快,并且预测到的分离区范围大,导叶尾缘脱落涡分散,导致转子上游来流空间分布不均程度较强。对于转子叶片上的载荷脉动,Smargrinsky-Lilly模型预测的推力谱中线谱成分明显,并且叶频处宽带谱峰“陡峭”,而WALE模型和KET模型的结果宽带特性较强,对比非定常推力测试结果可知,WALE模型和KET模型更适于该问题宽带非定常力预测。  相似文献   
36.
以二维非定常Navier-Stokes方程为模型方程,采用Jameson有限体积并引入变系数隐式残值光顺及固接网格计算了直升机旋翼不同展向位置处翼剖面的非定常气动力,进而采用插值的方法模拟直升机在悬停及前飞状态下,旋翼的桨叶所受的非常气动力载荷,并将之与桨叶的结构振动方程相耦合,求解其时域内的结构响应,非定常下气动力计算结果与实验结果做了对比,两者比较吻合,旋翼结构响应计算结果合理。  相似文献   
37.
甲烷-空气的二次爆炸流场实验研究   总被引:1,自引:0,他引:1  
为了揭示二次爆炸的产生机制及其影响因素,采用带导管的柱形泄爆装置对向空气中泄爆的过程进行了实验。实验获得了在不同泄爆条件下清晰的时序阴影照片和外流场测点的压力历程。根据实验结果分析了二次爆炸的产生条件,并详细讨论了二次爆炸影响因素在不同泄爆条件的变化,从而分析和解释了二次爆炸强度在相应泄爆条件下的变化规律。  相似文献   
38.
以低速压气机试验为原型,采用二维非定常数值模拟的方法研究了轴向间距改变对低速压气机气动性能的影响。数值模拟结果显示,轴向间距减至原型间距的33%时,整机效率的提高超过了1%。该方案在除第一列静叶之外的三列叶栅中都表现出流动损失的降低,尤其在第一列动叶中最为明显。轴向间距减小带来的势流干扰增强产生非定常的扑翼现象,显著改善了第一列动叶的流动状态。适当减小轴向间距可以降低叶栅内下游叶列非定常干扰引起的损失。  相似文献   
39.
付维亮  黄镜玮  高杰  郑群 《推进技术》2022,43(4):127-137
为探究受涡轮动、静叶片单独及共同作用下的轮缘密封结构封严与入侵的精细流动机理,通过SST湍流模型,对处于无叶片、仅存在动叶、仅存在静叶、动静叶均存在的4个不同环境中的典型轴向密封结构进行非定常数值模拟.结果表明:动、静叶片通过改变轮缘密封间隙出口处高、低压区之间的面积与压差,和增加间隙内的再循环及泰勒-库特型流动强度,...  相似文献   
40.
The problem of aeroelasticity and maneuvering of command surface and gust wing interaction involves a starting flow period which can be seen as the flow of an airfoil attaining suddenly an angle of attack. In the linear or nonlinear case, compressive Mach or shock waves are generated on the windward side and expansive Mach or rarefaction waves are generated on the leeward side. On each side, these waves are composed of an oblique steady state wave, a vertically-moving one-dimensional unsteady wave, and a secondary wave resulting from the interaction between the steady and unsteady ones. An analytical solution in the secondary wave has been obtained by Heaslet and Lomax in the linear case, and this linear solution has been borrowed to give an approximate solution by Bai and Wu for the nonlinear case. The structure of the secondary shock wave and the appearance of various force stages are two issues not yet considered in previous studies and has been studied in the present paper. A self-similar solution is obtained for the secondary shock wave, and the reason to have an initial force plateau as observed numerically is identified. Moreover, six theoretical characteristic time scales for pressure load variation are determined which explain the slope changes of the time-dependent force curve.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号