首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   529篇
  免费   65篇
  国内免费   68篇
航空   302篇
航天技术   175篇
综合类   91篇
航天   94篇
  2023年   9篇
  2022年   10篇
  2021年   23篇
  2020年   19篇
  2019年   23篇
  2018年   34篇
  2017年   21篇
  2016年   18篇
  2015年   24篇
  2014年   36篇
  2013年   39篇
  2012年   40篇
  2011年   56篇
  2010年   36篇
  2009年   32篇
  2008年   36篇
  2007年   28篇
  2006年   30篇
  2005年   23篇
  2004年   14篇
  2003年   15篇
  2002年   15篇
  2001年   10篇
  2000年   11篇
  1999年   5篇
  1998年   7篇
  1997年   12篇
  1996年   7篇
  1995年   4篇
  1994年   5篇
  1993年   8篇
  1992年   4篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
排序方式: 共有662条查询结果,搜索用时 209 毫秒
61.
随着经济蓬勃发展,水生农作物市场的需求量不断增长,水域水质检测行业显得日益重要,但人工水质水域检测效率低下,为此设计一套可以搭载检测传感器的水质检测蛇形机器人,以提高检测效率、降低检测成本、减轻人工劳动力度。为适应水下环境,该机器人具备小巧、灵活、机动性能好、转弯灵活、对复杂水域适应能力强、可检测不同深度水质的特点,在此针对机器人的移动单元结构设计及强度校核等问题进行分析,可为以后解决此类问题提供一种验证手段。  相似文献   
62.
From September 7 to 8, 2017, a G4-level strong geomagnetic storm occurred, which seriously impacted on the Earth’s ionosphere. In this work, the global ionospheric maps released by Chinese Academy of Sciences are used to investigate the ionospheric responses over China and its adjacent regions during the strong storm. The prominent TEC enhancements, which mainly associated with the neutral wind and eastward prompt penetration electric field, are observed at equatorial ionization anomaly crests during the main phase of the storm on 8 September 2017. Compared with those on 8 September, the TEC enhancements move to lower-latitude regions during the recovery phase on 9 September. A moderate storm occurred well before the start of the strong storm causes similar middle-latitude TEC enhancements on 7 September. However, the weak TEC depletion is observed at middle and low latitude on 9–10 September, which could be associated with the prevailing westward disturbance electric field or storm-time neural composition changes. In addition, the storm-time RMS and STD values of the ionospheric TEC grids over China increase significantly due to the major geomagnetic storm. The maximum of the RMS reaches 12.0 TECU, while the maximum of the STD reaches 8.3 TECU at ~04UT on 8 September.  相似文献   
63.
Due to the special geographical location and extreme climate environment, the polar regions (Antarctic and Arctic) have an important impact on global climate change. Atmospheric weighted mean temperature (Tm) is a crucial parameter in the retrieval of precipitable water vapor (PWV) from the zenith wet delay (ZWD) of ground-based Global Navigation Satellite System (GNSS) signal propagation. In this paper, the correlation between weighted mean temperature and surface temperature (Ts) is studied firstly. It is shown that the correlation coefficients between Tm and Ts are 0.93 in the Antarctic and 0.94 in the Arctic. The linear regression Tm model and quadratic function Tm model of the Antarctic and the Arctic are established respectively using the radiosonde profiles of 12 stations in the Antarctic and 58 stations in the Arctic from 2008 to 2015. The accuracies of the linear regression Tm model, the quadratic function Tm model and GPT2w Tm model which is a state-of-the-art global Tm model are verified using the radiosonde profiles from 2016 to 2018 in the Antarctic and Arctic. Root Mean Square (RMS) errors of the linear regression Tm model, the quadratic function Tm model and GPT2w Tm model in the Antarctic are 3.07 K, 2.87 K and 4.32 K respectively, and those in the Arctic are 3.53 K, 3.38 K and 4.82 K, which indicates that the quadratic function Tm model has a higher accuracy compared to linear regression Tm model, and the accuracies of the two regional Tm models are better than that of GPT2w Tm model in the polar regions. In order to better evaluate the accuracy of Tm in the PWV retrieval, the PWV values of radiosondes are used for comparisons as the reference value. The RMS errors of PWV derived from the two Tm models are similar for 1.28 mm in the Antarctic and 1 mm in the Arctic respectively. In addition, the spatial and temporal variation characteristics of Tm are analyzed in the polar regions by spectral analysis of Tm data using fast Fourier transform. The results show that the Tm has obvious seasonality and annual periodicity in the polar regions, and the maximum difference between warm season and cold season is about 63 K. After comparing and analyzing the influences of latitude, longitude and elevation on the Tm in the polar regions, it is found that latitude and elevation have a greater influence on the Tm than the longitude. As the latitude and elevation increase, the Tm decreases, and vice versa in the polar regions.  相似文献   
64.
We examined performance of two empirical profile-based ionospheric models, namely IRI-2016 and NeQuick-2, in electron content (EC) and total electron content (TEC) representation for different seasons and levels of solar activity. We derived and analyzed EC estimates in several representative altitudinal intervals for the ionosphere and the plasmasphere from the COSMIC GPS radio occultation, ground-based GPS and Jason-2 joint altimeter/GPS observations. It allows us to estimate a quantitative impact of the ionospheric electron density profiles formulation in several altitudinal intervals and to examine the source of the model-data discrepancies of the EC specification from the bottom-side ionosphere towards the GPS orbit altitudes. The most pronounced model-data differences were found at the low latitude region as related to the equatorial ionization anomaly appearance. Both the IRI-2016 and NeQuick-2 models tend to overestimate the daytime ionospheric EC and TEC at low latitudes during all seasons of low solar activity. On the contrary, during high solar activity the model results underestimated the EC/TEC observations at low latitudes. We found that both models underestimated the EC for the topside ionosphere and plasmasphere regions for all levels of solar activity. For low solar activity, the underestimated EC from the topside ionosphere and plasmasphere can compensate the overestimation of the ionospheric EC and, consequently, can slightly decrease the resulted model overestimation of the ground-based TEC. For high solar activity, the underestimated EC from the topside ionosphere and plasmasphere leads to a strengthening of the model underestimation of the ground-based TEC values. We demonstrated that the major source of the model-data discrepancies in the EC/TEC domain comes from the topside ionosphere/plasmasphere system.  相似文献   
65.
We have compared the TEC obtained from the IRI-2012 model with the GPS derived TEC data recorded within southern crest of the EIA in the Eastern Africa region using the monthly means of the 5 international quiet days for equinoxes and solstices months for the period of 2012 – 2013. GPS-derived TEC data have been obtained from the Africa array and IGS network of ground based dual-frequency GPS receivers from four stations (Kigali (1.95°S, 30.09°E; Geom. Lat. 11.63°S), Malindi (2.99°S, 40.19°E; Geom. Lat. 12.42°S), Mbarara (0.60°S, 30.74°E; Geom. Lat. 10.22°S) and Nairobi (1.22°S, 36.89°E; Geom. Lat. 10.69°S)) located within the EIA crest in this region. All the three options for topside Ne of IRI-2012 model and ABT-2009 for bottomside thickness have been used to compute the IRI TEC. Also URSI coefficients were considered in this study. These results are compared with the TEC estimated from GPS measurements. Correlation Coefficients between the two sets of data, the Root-Mean Square Errors (RMSE) of the IRI-TEC from the GPS-TEC, and the percentage RMSE of the IRI-TEC from the GPS-TEC have been computed. Our general results show that IRI-2012 model with all three options overestimates the GPS-TEC for all seasons and at all stations, and IRI-2001 overestimates GPS-TEC more compared with other options. IRI-Neq and IRI-01-corr are closely matching in most of the time. The observation also shows that, GPS TEC are underestimated by TEC from IRI model during noon hours, especially during equinoctial months. Further, GPS-TEC values and IRI-TEC values using all the three topside Ne options show very good correlation (above 0.8). On the other hand, the TEC using IRI-Neq and IRI-01- corr had smaller deviations from the GPS-TEC compared to the IRI-2001.  相似文献   
66.
Spherical harmonic (SH) expansion is widely used to model the global ionosphere map (GIM) of vertical total electron content (VTEC). According to the impact of different data processing methods of the SH expansion model on the VTEC maps, we specifically performed comprehensive analysis in terms of the data sampling rate, the time resolution, the spherical harmonic degree, and the relative constraint. One month of GPS data (January in 2016) from the International GNSS (Global Navigation Satellite System) Service (IGS) network in a moderate ionospheric activity period at the descending phase of Solar Cycle 24 was processed. To improve the computational efficiency of the daily GIM generation, the data sampling rate of 5?min was recommended allowing the GIM precision loss within 0.10 TECU (total electron content unit). The global VTEC map could be better represented in temporal and spatial domains with higher time resolution and higher spherical harmonic degree, especially at low latitude bands and in the southern hemisphere. The GIM precision improvement was about 10.91% for 1-h and about 15.15% for 0.5-h compared with the commonly used 2-h time resolution. The use of spherical harmonic degree 17 or 20 instead of 15 could improve the precision by 3.19% or 6.06%. We also found that an optimal relative constraint had to be found experimentally considering both the GIM precision and the GIM root mean square (RMS) map.  相似文献   
67.
上海市河流水污染监测是当前研究的热点问题。针对上海市河流水质监测的需求,提出了一种基于因子分析的河流综合水质遥感反演的方法。以欧洲航空局发射的哨兵-2A(Sentinel-2A)卫星搭载的多光谱成像仪获取的遥感影像,以及准同步获取的河流断面实测水质参数数据为例,研究对象为上海市青浦区和松江区部分河道。选取高锰酸盐指数、氨氮等5项主要水质参数为监测指标,在因子分析的基础上建立水质遥感反演的模型,得到综合水质指标用于确定水质类别。实验结果表明:综合水质指标值越小,内陆河流水质状况越良好,水体更清洁。该方法能够应用于内陆河流水质遥感监测,为水环境管理部门提供参考信息。  相似文献   
68.
基于厂方对供热系统的要求,根据供热建筑物、机房和可利用设施的实际情况,采用一台换热器,通过阀门的切换,实现了供暖和供热水的分段运行。将蒸汽发生器的进水与系统补水有机地整合为一个系统,有效地解决了机房面积过小的实际困难。利用自来水的压力和热水箱与浴室的高差解决了热水供应的实际问题。  相似文献   
69.
将微藻和电去离子技术引入密闭生态系统,设计单元反应器旨在验证其在空气再生、水净化和潜在食物的生产。在反应器中对尿液进行消解和NH4+硝化转化得到超过90%NH4+-N硝化为NO-3-N-的培养液适宜于螺旋藻养殖并获得高质量的微藻生物量;此时,CO2的平均吸收速率VCO2=458.6 mL/m3·min、O2产生速率VO2=616.5 mL/m3·min,即螺旋藻的同化系数VCO2/VO2≈0.74,接近人的呼吸系数VCO2/VO2=0.86;EDI法水净化率97%可直接回用。结果表明:该体系能实现CO2吸收、O2释放和螺旋藻生物量的生产,同时将水净化。  相似文献   
70.
为了实现MW级热流环境的长时间稳态测量,研制了一种新型结构的水卡式大热流传感器。该传感器采用U型水冷通道结构,基于沸腾换热理论进行换热设计,设计量程5~15 MW/m~2。在高温超声速燃气流试验台上进行了热流测试试验,实际测试量程3~25 MW/m~2。沸腾换热理论的应用可以在较小的水流速下实现MW级热防护,大大降低了设计难度。新型结构传感器相对传统的中心冲击结构换热效率更高,可实现的量程范围更大。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号