首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   8篇
  国内免费   1篇
航空   35篇
航天技术   5篇
综合类   3篇
航天   1篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2016年   6篇
  2015年   5篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1996年   1篇
排序方式: 共有44条查询结果,搜索用时 0 毫秒
41.
无人机的安全滑跑是整个飞行任务的基础,也是其重复使用的重要前提。以前三点式无人机为研究对象,重点研究了滑跑阶段的安全保护策略以及航向保持控制律。首先对滑跑过程中最常见的侧翻现象进行建模,并通过侧翻试验验证了模型的正确性。然后基于侧翻模型提出了预防侧翻的安全边界,并设计了侧翻保护系统。其次,通过试验辨识出前轮转角对航向角速度的传递函数,在此基础上设计了滑跑航向控制律,并改变了操纵手的航向操控模式。最后,滑跑试验结果表明,带有侧翻保护功能的滑跑航向控制系统能够有效完成无人机的滑跑任务。  相似文献   
42.
飞机起落架系统摆振动力学研究进展   总被引:1,自引:0,他引:1  
摆振是起落架支柱侧向运动与围绕支柱的扭转运动相互耦合产生的自激振动,对飞机地面滑行的操纵性与安全性等具有很大的危害,是起落架系统设计中重点关注的动力学问题之一。摆振主要有“轮胎型”和“结构型”2类,可以采用动力学理论建模、多体动力学数值分析与全尺寸物理试验等方法对起落架系统的摆振特性进行研究,已发展了线性与非线性理论建模方法和数值工具,建立起了起落架摆振试验系统,也开展了全机瞬态激励下的滑跑稳定性试验。为防止摆振问题的产生,在认识摆振机理的基础上,研究者广泛而又深入地研究了起落架设计参数、轮胎参数、机体特性等对滑跑动响应与稳定性的影响,在获得各种设计参数对起落架摆振稳定性影响的基础上,发展了摆振动力学优化设计方法和智能器件与半主动/主动控制的摆振抑制方法,并开展了试验验证或装机演示验证。结合未来飞机平台的发展和起落架技术的创新,对起落架摆振动力学问题的未来发展方向进行了展望。  相似文献   
43.
飞机着陆滑跑过程中,平尾结构将受到较大的冲击作用和振动激励。为预判结构局部危险部位,给结构强度设计提供参考,需对平尾着陆滑跑过程中的动态性能进行分析。创新性地考虑了飞机滑跑速度和气动力的变化,为有限元计算提供可靠的外载输入,并合理设置约束条件,建立半机体有限元模型,降低计算规模。最后提取平尾各站位处的载荷响应峰值,作出动响应包线,预判结构局部危险部位,如平尾根部,为结构强度设计提供参考。  相似文献   
44.
高速起降无人机地面滑跑过程中受到轮胎力、气动力、舵面力等多个非线性因素的影响,容易发生转弯失控,在地面打转甚至冲出跑道等严重事故。目前利用分岔理论分析飞机地面滑跑非线性转弯系统稳定性时,都是基于匀速滑跑的平衡态系统,无法分析加减速对非线性非自治飞机地面滑跑系统稳定性的影响。对此,提出利用达朗贝尔原理将非线性动态系统转化为等效非线性平衡态系统进行分岔特性研究。在MATLAB/Simulink中建立无人机非线性地面变速滑跑动力学模型,并基于达朗贝尔原理在系统模型中引入惯性力,将系统转化为等效平衡态系统,进而利用数值延拓法对系统全局稳定性及分岔特性进行求解,分析了无人机变速滑跑过程中加速度对无人机转弯方向稳定性的影响,并对系统出现的鞍结分岔现象、Hopf分岔现象进行分析。通过对3种典型工况下无人机的运动状态和受力进行分析,揭示了无人机地面变速滑跑转弯时发生方向失稳的本质与机理。同时,在加速度单参数分岔分析的基础上,采用开折方法,将前轮转角作为附加参数引入无人机地面滑跑动力学模型,进行双参数分岔分析,讨论了双参数组合对无人机地面滑跑方向稳定性的影响规律,并就双参数分岔过程中新出现的BT分岔、G...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号