首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   71篇
  免费   5篇
  国内免费   13篇
航空   38篇
航天技术   28篇
综合类   5篇
航天   18篇
  2023年   3篇
  2022年   5篇
  2020年   5篇
  2019年   2篇
  2018年   7篇
  2017年   1篇
  2016年   5篇
  2015年   2篇
  2014年   1篇
  2013年   9篇
  2012年   2篇
  2011年   8篇
  2010年   3篇
  2009年   15篇
  2008年   2篇
  2007年   4篇
  2006年   6篇
  2005年   3篇
  2004年   1篇
  2001年   2篇
  1999年   2篇
  1987年   1篇
排序方式: 共有89条查询结果,搜索用时 15 毫秒
1.
A computational study on the supersonic flow around the lateral jet controlled missile has been performed. A three-dimensional Navier–Stokes computer code (AADL 3D) has been developed and case studies have been performed by comparing the normal force coefficient and the moment coefficient of a missile body. Different jet flow conditions including jet pressures and jet Mach numbers, and the circumferential jet positions have been incorporated into the case studies. The missile surface is divided into four regions with respect to the center of gravity, and the normal force and moment distribution at each region are compared. The results show conspicuously different normal force and moment variations according to each parameter variation. From the detailed flow field analyses, it has been verified that most of the normal force loss and the pitching moment generation are taking place at the low-pressure region behind the jet nozzle. Furthermore, it is shown that the pitching moment can be efficiently reduced by the lateral thrust obtained through higher jet Mach number rather than high jet pressure. Thus, an angle of yaw is more effective for missile control by side jet than an angle of attack.  相似文献   
2.
Electromechanical actuators (EMAs) are becoming increasingly attractive in the field of more electric aircraft because of their outstanding benefits, which include reduced fuel burn and maintenance cost, enhanced system flexibility, and improved management of fault detection and isolation. However, electromechanical actuation raises specific issues when being used for safety-critical aerospace applications like flight controls: huge reflected inertia to load, jamming-type failure, and increase of backlash with service due to wear and local dissipation of heat losses for thermal balance. This study proposes an incremental approach for virtual prototyping of EMAs. It is driven by a model-based system engineering process in order to enable simulation-aided design. Best practices supported by Bond graph formalism are suggested to develop a model’s structure efficiently and to make the model ready for use (or extension) by addressing the above mentioned issues. Physical effects are progressively introduced, and the realism of lumped-parameter models is increased step-by-step. In particular, multi-level component models are architected to ensure continuity between engineering activities. The models are implemented in the AMESim simulation environment, and simulation responses are given to illustrate how they can be used for preliminary sizing, control design, thermal balance verification, and faults to failure analysis. The proposed best practices intend to provide engineers with fast, reusable, and efficient means to assess performance virtually and enhance maturity, performance, and robustness.  相似文献   
3.
在局域网范围内,实现统计过程控制(SPC)管理系统的应用,有效的解决了生产车间之间的数据传送和实时统计问题,并能及时的对加工零件的关键质量数据进行统计分析,有效地控制,进而达到对加工状态预警和调整的目的.  相似文献   
4.
微机电系统(MEMS,Micro Electromechanical Systems)在航空航天、汽车、生物医学、环境监控、军事等领域中有着广泛的应用前景.其材料力学性能的测试目前是其性能测试的薄弱环节,它涉及到微位移、精密定位和载荷/位移测量.采用传统"机械"制造技术,由于摩擦、间隙、爬行和多环节传动误差积累等原因而无法实现.为此,提出了一种冗余驱动全柔性并联机构和压电陶瓷驱动器所组成的新型测量平台.在推导4RRR冗余驱动并联机构运动学逆问题方程的基础上,经过最佳拓扑选择、运动学分析,并基于动力学优化,确定了微位移/精密定位运动平台主要结构尺寸.实验表明:采用该平台,可以满足MEMS材料力学性能测量所需的微位移和精确定位要求.  相似文献   
5.
The clearance in joints influences the dynamic stability and the performance of deployable space structures (DSS). A virtual experimental modal analysis (VEMA) method is proposed to deal with the effects of joint clearance and link flexibility on the dynamic characteristics of the DSS in this paper. The focus is on the finite element modeling of the clearance joint, VEMA and the modal parameters identification of the DSS. The finite element models (FEM) of the clearance joint and the deployable structure are established in ANSYS. The transient dynamic analysis is conducted to provide the time history data of excitation and response for the VEMA. The fast Fourier transform (FFT) technique is used to transform the data from time domain to frequency domain. The frequency response function is calculated to identify the modal parameters of the deployable structure. Experimental verification is provided to indicate the VEMA method is both a cost and time efficient approach to obtain the dynamic characteristics of the DSS. Finally, we analyze the effects of clearance size and gravity on the dynamic characteristics of the DSS. The analysis results indicate that the joint clearance and gravity strongly influence the dynamic characteristics of the DSS.  相似文献   
6.
A real time TV view finder is used on-board a low earth orbiting (LEO) satellite to manually select targets for imaging from a ground station within the communication footprint of the satellite. The attitude control system on the satellite is used to steer the satellite using commands from the groundstation and a television camera onboard the satellite will then downlink a television signal in real time to a monitor screen in the ground station. The operator in the feedback loop will be able to manually steer the boresight of the satellite's main imager towards interested target areas e.g. to avoid clouds or correct for any attitude pointing errors. Due to a substantial delay (in the order of a second) in the view finding feedback loop and the narrow field of view of the main imager, the operator has to be assisted by the onboard attitude control system to stabilise and track the target area visible on the monitor screen.This paper will present an extended Kalman filter used to estimate the satellite's attitude angles using quaternions and the bias vector component of the 3-axis inertial rate sensors (gyros). Absolute attitude sensors (i.e. sun, horizon and magnetic) are used to supply the measurement vectors to correct the filter states during the view finder manoeuvres. The target tracking and rate steering reaction wheel controllers to accurately point and with high agility stabilise the satellite, will be presented. The controller reference generator for the satellite-to-target attitude and rate vectors, as used by the reaction wheel controllers, will be derived.  相似文献   
7.
数字化测量技术在飞机大尺寸零部件检测的应用日益广泛,合理规划测量点数量和分布以精确地描述待测特征已成为关键问题之一。针对复杂曲线曲面的测量点规划问题,提出了一种基于确定性表达的测量点差异性规划方法。利用非均匀有理B样条(NURBS)理论精确拟合自由曲线,通过粒子群优化算法综合优化控制点及权因子,构建高精度的拟合曲线。提出了面向曲率特性和测量不确定度的布点策略,结合曲面特性建立完整、高效的测量点规划流程。基于CAA模块程序化实现了测量点规划方法,并以试验件为验证对象,验证了所提方法的可行性和系统的有效性。   相似文献   
8.
In the conventional cascade control structure of aerospace electrically powered actuators, the current (or electromagnetic torque) loop plays a critical role in realizing a rapid response for a digitally controlled BrushLess Direct Current (BLDC) motor. Hysteresis Current Control (HCC) is an effective method in improving the performance of current control for a BLDC motor. Nevertheless, the varying modulating frequency in the traditional HCC causes severe problems on the safety of power devices and the electromagnetic compatibility design. A triangular carrier-based fixed-frequency HCC strategy is expanded by relaxing the constraints on the rising and descending rates of the winding current to advance the capability of HCC to realize fixed-frequency modulation in the steady state. Based on that, a new flexible-bound-size quasi-fixed-frequency HCC is proposed, and the range feasible to realize fixed-frequency modulation control can cover the entire running process in the steady state. Meanwhile, a corresponding digital control strategy is designed, and four digitalization rules are proposed to extend the capacity to achieve fixed-frequency modulation control to the unsteady working state, that is, a novel fixed-frequency modulation is realized. Simulation and experimental results prove the effectiveness of this improved fixed-frequency HCC strategy.  相似文献   
9.
挠性附件运动时产生的弹性振动是影响空间飞行器指向精度和控制性能的主要原因.因此,在地面对控制系统抑制振动的性能进行验证具有重要意义.由于太阳帆板低频且长度较大,在地面构建大范围运动的空间微重力环境,耗资及难度极大.本文提出一种基于等效主轴惯量与挠性频率的卫星挠性旋转帆板挠性模拟器,基于气浮法设计了低摩擦与微重力环境的物理仿真系统,并建立了模拟器的动力学模型,等效模拟了卫星挠性旋转帆板的振动特性,降低了卫星挠性旋转帆板地面微重力运动环境模拟的难度,实现了对其控制算法抑制振动性能的有效及高经济性测试.仿真结果表明,模拟器可以通过简单操作实现参数的平滑改变以模拟不同参数及结构的卫星挠性旋转帆板,且具有与真实太阳帆板一致的振动特性,满足测试要求.   相似文献   
10.
从分析轨道控制动力学方程出发,结合工程应用实际约束,针对具有回归、冻结等特性的太阳同步轨道,设计其初轨捕获策略。该策略将初轨捕获任务规划为4个阶段,前3个阶段进行发动机推力效率标校、大控制量的轨道面内修正和轨道面内的精调,完成轨道面内捕获;最后一个阶段完成轨道倾角捕获。最后对某太阳同步轨道卫星的初轨捕获策略进行了详细设计并通过仿真计算验证该策略的合理有效性。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号