首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   94篇
  免费   0篇
航空   43篇
航天技术   32篇
航天   19篇
  2021年   4篇
  2019年   2篇
  2018年   4篇
  2017年   3篇
  2015年   1篇
  2014年   2篇
  2013年   10篇
  2012年   5篇
  2011年   5篇
  2010年   7篇
  2009年   3篇
  2008年   7篇
  2007年   2篇
  2006年   2篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1985年   7篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   2篇
排序方式: 共有94条查询结果,搜索用时 281 毫秒
11.
Burning of composite solid rocket propellants near the pressure deflagration limit (PDL) was studied experimentally in two different test chambers. The propellant tested was a nonmetallized ammonium perchlorate-based composite propellant (AP 84/CTPB 16). Measurements were taken of the regression rate, oscillations frequency and flame luminosity. Self-sustained oscillations were detected near the PDL that matched reasonably well the predictions of the analytical nonlinear stability theory and of the numerically solved nonlinear mathematical model. Both experimental and numerical results show the burning rate oscillations near the PDL due to statically unstable burning, that is the only combustion regime possible below a certain pressure. When pressure is further reduced the amplitude of the oscillations increases and their frequency decreases, until extinction follows abruptly below a pressure that corresponds to the PDL.  相似文献   
12.
The measured D/H ratios in interstellar environments and in the solar system are reviewed. The two extreme D/H ratios in solar system water - (720±120)×10−6 in clay minerals and (88±11)×10−6 in chondrules, both from LL3 chondritic meteorites - are interpreted as the result of a progressive isotopic exchange in the solar nebula between deuterium-rich interstellar water and protosolar H2. According to a turbulent model describing the evolution of the nebula (Drouart et al., 1999), water in the solar system cannot be a product of thermal (neutral) reactions occurring in the solar nebula. Taking 720×10−6 as a face value for the isotopic composition of the interstellar water that predates the formation of the solar nebula, numerical simulations show that the water D/H ratio decreases via an isotopic exchange with H2. During the course of this process, a D/H gradient was established in the nebula. This gradient was smoothed with time and the isotopic homogenization of the solar nebula was completed in 106 years, reaching a D/H ratio of 88×10−6. In this model, cometary water should have also suffered a partial isotopic re-equilibration with H2. The isotopic heterogeneity observed in chondrites result from the turbulent mixing of grains, condensed at different epochs and locations in the solar nebula. Recent isotopic determinations of water ice in cold interstellar clouds are in agreement with these chondritic data and their interpretation (Texeira et al., 1999). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
13.
In this paper, we described the Comprehensive AeroSpace Index (CASI), a financial index aimed at representing the economic performance of the aerospace industry. CASI is build upon a data set of approximately 20 years of daily close prices set, from January 1987 to June 2007, from a comprehensive sample of leading aerospace-related companies with stocks negotiated on the New York Exchange (NYSE) and on the over-the-counter (OTC) markets. We also introduced the sub-indices CASI-AERO, for aeronautical segment, and CASI-SAT, for satellite segment, and considered the relation between them. These three indices are compared to others aerospace indices and to more traditional general financial indices like DJIA, S&P500 and Nasdaq. Our results have shown that the CASI is an index that describes very well the aerospace sector behavior, since it is able to reflect the aeronautical segment comportment as well as the satellite one. Therefore, in this sense, it can be considered as a representative index of the aerospace sector. Moreover, the creation of two sub-indices, the CASI-AERO and the CASI-SAT, allows to elucidate capital movements within the aerospace sector, particularly those of speculative nature, like the dot.com bubble and crash of 1998–2001.  相似文献   
14.
Fixed wing micro air vehicles (wingspan between 10 and 15 cm) are aerodynamically challenging due to the low Reynolds number regime (104–105) they operate in. The low aspect ratio wings (typically used to maximize area under a size constraint) promote strong tip vortices, and are susceptible to rolling instabilities. Wind gusts can be of the same order of magnitude as the flight speed (10–15 m/s). Standard control surfaces on an empennage must be eliminated for size considerations and drag reduction, and the range of stable center of gravity locations is only a few millimeters long. Membrane aeroelasticity has been identified as a tenable method to alleviate these issues: flexible wing structures with geometric twist (adaptive washout for gust rejection, delayed stall) and aerodynamic twist (adaptive inflation for high lift, larger stability margins) are both considered here. Recent investigations in static aeroelastic characterization, including flight loads, wing deformation, flow structures, aeroelastic-tailoring studies through laminate orientation, as well as unconventional techniques based on membrane pre-tension, are reviewed. Multi-objective optimization aimed at improving lift, drag, and pitching moment considerations is also discussed.  相似文献   
15.
16.
ONERA developed, for studying the response of a propellant to a pressure or velocity fluctuation, an experimental rocket engine whose nozzle throat area can be modulated by a toothed disk.The paper presents a linearized theory of the functioning of this engine in the low frequency domain, i.e. when there is no wave propagation within the combuster.To describe the functioning of this motor, the Ryazantsev-Novozhilov method, which assumes that the gas response is instantaneous, is used. This analysis takes into account the erosion and radiation effects, the combustion efficiency and the thermal losses through the walls.Two particular cases are described, for two values of the Damköhler parameter D1 = tctth, where tc is the residence time in the combuster and tth the characteristic thermal time of the heat penetration into the solid propellant. These two cases correspond, one to a classical propellant D1 > 1, the other to a particular propellant of low burning rate (Jb ? 0.2 to 0.4 mm s?1) D1 < 1. The stability conditions are analysed as well as the pressure amplitute and phase as a function of the nozzle throat modulation frequency.Still in linearized theory, the complete solutions of the problem are presented, using a method of numerical resolution.  相似文献   
17.
18.
Close proximity operations around small bodies are extremely challenging due to their uncertain dynamical environment. Autonomous guidance and navigation around small bodies require fast and accurate modeling of the gravitational field for potential on-board computation. In this paper, we investigate a model-based, data-driven approach to compute and predict the gravitational acceleration around irregular small bodies. More specifically, we employ Extreme Learning Machine (ELM) theories to design, train and validate Single-Layer Feedforward Networks (SLFN) capable of learning the relationship between the spacecraft position and the gravitational acceleration. ELM-base neural networks are trained without iterative tuning therefore dramatically reducing the training time. Analysis of performance in constant density models for asteroid 25143 Itokawa and comet 67/P Churyumov-Gerasimenko show that ELM-based SLFN are able learn the desired functional relationship both globally and in selected localized areas near the surface. The latter results in a robust neural algorithm for on-board, real-time calculation of the gravity field needed for guidance and control in close-proximity operations near the asteroid surface.  相似文献   
19.
The PROCESS (PRebiotic Organic ChEmistry on the Space Station) experiment was part of the EXPOSE-E payload outside the European Columbus module of the International Space Station from February 2008 to August 2009. During this interval, organic samples were exposed to space conditions to simulate their evolution in various astrophysical environments. The samples used represent organic species related to the evolution of organic matter on the small bodies of the Solar System (carbonaceous asteroids and comets), the photolysis of methane in the atmosphere of Titan, and the search for organic matter at the surface of Mars. This paper describes the hardware developed for this experiment as well as the results for the glycine solid-phase samples and the gas-phase samples that were used with regard to the atmosphere of Titan. Lessons learned from this experiment are also presented for future low-Earth orbit astrochemistry investigations.  相似文献   
20.
The chilled rinds of pillow basalt from the Ampère-Coral Patch Seamounts in the eastern North Atlantic were studied as a potential habitat of microbial life. A variety of putative biogenic structures, which include filamentous and spherical microfossil-like structures, were detected in K-phillipsite-filled amygdules within the chilled rinds. The filamentous structures (~2.5 μm in diameter) occur as K-phillipsite tubules surrounded by an Fe-oxyhydroxide (lepidocrocite) rich membranous structure, whereas the spherical structures (from 4 to 2 μm in diameter) are associated with Ti oxide (anatase) and carbonaceous matter. Several lines of evidence indicate that the microfossil-like structures in the pillow basalt are the fossilized remains of microorganisms. Possible biosignatures include the carbonaceous nature of the spherical structures, their size distributions and morphology, the presence and distribution of native fluorescence, mineralogical and chemical composition, and environmental context. When taken together, the suite of possible biosignatures supports the hypothesis that the fossil-like structures are of biological origin. The vesicular microhabitat of the rock matrix is likely to have hosted a cryptoendolithic microbial community. This study documents a variety of evidence for past microbial life in a hitherto poorly investigated and underestimated microenvironment, as represented by the amygdules in the chilled pillow basalt rinds. This kind of endolithic volcanic habitat would have been common on the early rocky planets in our Solar System, such as Earth and Mars. This study provides a framework for evaluating traces of past life in vesicular pillow basalts, regardless of whether they occur on early Earth or Mars.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号