首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   1篇
航空   74篇
航天技术   23篇
航天   24篇
  2021年   1篇
  2018年   1篇
  2017年   5篇
  2016年   1篇
  2015年   3篇
  2014年   1篇
  2013年   7篇
  2012年   3篇
  2011年   5篇
  2010年   1篇
  2009年   7篇
  2008年   5篇
  2007年   4篇
  2005年   2篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   5篇
  1987年   2篇
  1986年   1篇
  1985年   5篇
  1984年   2篇
  1983年   4篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1973年   3篇
  1971年   2篇
  1970年   2篇
  1969年   6篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有121条查询结果,搜索用时 109 毫秒
51.
Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in earth science. With new satellite missions being launched every year, new types of earth science data are being incorporated into science models and decision-making systems in a broad array of organizations. Policy guidance can influence the degree to which user needs influence mission design and when, and ensure that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive. By considering the needs of the user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in NASA and ESA and compares and contrasts the successes and challenges faced by these agencies as they try to balance science and applications within their missions.  相似文献   
52.
A half-day meeting on the role of satellites in combating climate change was added on to the eleventh annual European Interparliamentary Space Committee meeting in London, October 2009. Organized by the UK Parliamentary Space Committee and the European Space Policy Institute, the meeting's four speakers covered a range of issues, before engaging in discussion with questions from the floor. The main points raised are presented below.  相似文献   
53.
The author analyzes the effects of phase errors on synthetic aperture radar (SAR). The theory is applied to the following question: how does the achievable resolution vary with the carrier frequency when optimum quadratic focus and/or optimum processing interval (synthetic aperture length) are used? Numerous related results are given, so that much of the material is tutorial. For phase errors corresponding to uncompensated motion, the best achievable RMS resolution with any phase error spectrum satisfies the derived equation. For motion-induced phase errors it is seen that resolution improves with increasing carrier frequency when the first term in the expression applies (e.g. for phase errors concentrated at low frequencies) and resolution is independent of carrier frequency when R δ/v/v is the smaller term (e.g. with broad band or high frequency phase errors)  相似文献   
54.
55.
Resolution limits and corresponding optimum linear apertures are determined in the presence of phase errors. Let ?(t) be the phase aberration at position t across the aperture; it is assumed that the random process ? has a power law structure function, E{[(?(t)-?(?)]2}= c|t-?|n. Beam tilting caused by the phase error is "removed" (for each sample of ?), then resolution formulas are developed. An approximate analysis is obtained in closed form and yields an optimum resolution proportional to c1/n for O < n < 2. The exact analysis is given for Gaussian ?, and again the optimum resolution is proportional to c1/n. In applications n= 5/3 is of interest, and in the Gaussian case the best obtainable equivalent rectangle resolution is ? ?)/2? (0.975)c3/5 radians with a corresponding optimum linear aperture of 14c-3/5. When long exposures are considered, imaging without removing beam tilting is of interest, and resolution is degraded by a factor of about 2.5 for a linear aperture. Alternatively, in some applications optimum focus as well as beam tilt should be considered, in this case resolution is improved by a factor of about 1.4 (again for n= 5/3). Finally, joint (tilt corrected) optimization over aperture length and taper is treated; however, as one might expect, the use of taper offers negligible resolution improvement.  相似文献   
56.
A potato explant consisting of a leaf, its axillary bud, and a small segment of stem will develop a tuber in 10-14 days when grown on earth. The tubers develop from the axillary buds and accumulate starch derived from sugars produced through photosynthesis and/or mobilized from leaf tissue. Potato explants were harvested and maintained in the Astroculture (TM) unit, a plant growth chamber designed for spaceflight. The unit provides an environment with controlled temperature, humidity, CO2 level, light intensity, and a nutrient delivery system. The hardware was loaded onto the space shuttle Columbia 24 hours prior to the launch of the STS-73 mission. Explant leaf tissue appeared turgid and green for the first 11 days of flight, but then became chlorotic and eventually necrotic by the end of the mission. The same events occurred to ground control explants with approximately the same timing. At the end of the 16-day mission, tubers were present on each explant. The size and shape of the space-grown tubers were similar to the ground-control tubers. The arrangement of cells in the tuber interior and at the exterior in the periderm was similar in both environments. Starch and protein were present in the tubers grown in space and on the ground. The range in starch grain size was similar in tubers from both environments, but the distribution of grains into size classes differed somewhat, with the space-grown tubers having more small grains than the ground control tubers. Proteinaceous crystals were found in tubers formed in each condition.  相似文献   
57.
Publications     
  相似文献   
58.
The antimonate precipitation technique was used to evaluate the effects of microgravity and ethylene on the cellular and subcellular distribution of free calcium ions in soybean root apices. Soybean (Glycine max L. [Merr.]) dry seeds were launched, activated by hydration, and germinated in the presence of KMnO4 (to remove ethylene) and in its absence onboard the space shuttle Columbia during the STS-87 mission. Primary root apices of 6-day old seedlings were fixed for electron microscopy after landing. Ultrastructural studies indicated that antimonate precipitation appeared as individual electron-dense particles which were more or less round in shape and varied in diameter from 10 nm (minimum size beginning from which the particles were well identified) to 90 nm. It was revealed that analyzed root cap cells varied in both the precipitate particle sizes and the amount particles per unit of the cellular area. In both flight and ground control treatments, antimonate precipitation level increases from apical meristem cells to peripheral (secretory) cells of root apices. In root cap statocytes, subcellular localization of precipitate particles was revealed in the cytoplasm, nucleus and small vacuoles. The quantitative analysis showed a reduction of precipitate density in the cytoplasm and the nucleus, and an increase in precipitate density in the vacuoles from statocytes of both spaceflight treatments in comparison with ground controls.  相似文献   
59.
The Dawn spacecraft is designed to travel to and operate in orbit around the two largest main belt asteroids, Vesta and Ceres. Developed to meet a ten-year life and fully redundant, the spacecraft accommodates an ion propulsion system, including three ion engines and xenon propellant tank, utilizes large solar arrays to power the engines, carries the science instrument payload, and hosts the hardware and software required to successfully collect and transmit the scientific data back to Earth. The launch of the Dawn spacecraft in September 2007 from Cape Canaveral Air Force Station was the culmination of nearly five years of design, development, integration and testing of this unique system, one of the very few scientific spacecraft to rely on ion propulsion. The Dawn spacecraft arrived at its first destination, Vesta, in July 2011, where it will conduct science operations for twelve months before departing for Ceres.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号