首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5798篇
  免费   13篇
  国内免费   8篇
航空   2774篇
航天技术   1821篇
综合类   18篇
航天   1206篇
  2021年   54篇
  2019年   29篇
  2018年   215篇
  2017年   164篇
  2016年   100篇
  2015年   56篇
  2014年   148篇
  2013年   160篇
  2012年   189篇
  2011年   313篇
  2010年   232篇
  2009年   353篇
  2008年   384篇
  2007年   239篇
  2006年   120篇
  2005年   191篇
  2004年   139篇
  2003年   170篇
  2002年   104篇
  2001年   177篇
  2000年   85篇
  1999年   108篇
  1998年   139篇
  1997年   92篇
  1996年   106篇
  1995年   137篇
  1994年   142篇
  1993年   77篇
  1992年   111篇
  1991年   55篇
  1990年   37篇
  1989年   98篇
  1988年   46篇
  1987年   50篇
  1986年   39篇
  1985年   118篇
  1984年   100篇
  1983年   82篇
  1982年   94篇
  1981年   128篇
  1980年   44篇
  1979年   40篇
  1978年   35篇
  1977年   26篇
  1976年   32篇
  1975年   28篇
  1974年   30篇
  1973年   25篇
  1972年   30篇
  1971年   23篇
排序方式: 共有5819条查询结果,搜索用时 31 毫秒
991.
In [1] expressions were constructed for the derivatives of all the orders of a planet’s gravitational potential with respect to the rectangular coordinates related to the gravity center of a planet. These expressions are series of spherical functions. The coefficients of the series of first-order derivatives depend on two Stokes constants, whereas the coefficients of next-order derivatives are linear combinations of the coefficients of preceding-order derivatives. In the present paper the derived expressions for the first and second potential derivatives are transformed into the form that is most convenient for solving the inverse problem, i.e., evaluating Stokes constants from satellite measurements of these derivatives. Each term of the new series for a derivative depends on a sum of two Stokes constants multiplied by linear combinations of several spherical functions. The new form of the expansions for the potential derivatives makes it possible to calculate Stokes constants by simultaneously applying satellite data either for all three first-order potential derivatives, or for all six second-order derivatives. The constructed series may be applied for modeling the Earth’s gravitational field from the satellite data obtained in the international CHAMP, GRACE, and GOCE missions.  相似文献   
992.
Active region NOAA 11158 produced many flares during its disk passage. At least two of these flares can be considered as homologous: the C6.6 flare at 06:51 UT and C9.4 flare at 12:41 UT on February 14, 2011. Both flares occurred at the same location (eastern edge of the active region) and have a similar decay of the GOES soft X-ray light curve. The associated coronal mass ejections (CMEs) were slow (334 and 337 km/s) and of similar apparent widths (43° and 44°), but they had different radio signatures. The second event was associated with a metric type II burst while the first one was not. The COR1 coronagraphs on board the STEREO spacecraft clearly show that the second CME propagated into the preceding CME that occurred 50 min before. These observations suggest that CME–CME interaction might be a key process in exciting the type II radio emission by slow CMEs.  相似文献   
993.
The magnetic field structure and the spatial characteristics of the large-scale currents in the magnetospheric tail were studied during quiet and moderately disturbed geomagnetic conditions in 2009. The magnetic field of the currents other than the tail current was calculated in terms of a paraboloid model of the Earth’s magnetosphere, A2000, and was subtracted from measurements. It was found on the base of obtained tail current magnetic field radial distribution that the inner edge of the tail current sheet is located in the night side magnetosphere, at distances of about 10 RE and of about 7 RE during quiet and disturbed periods respectively. During the disturbance of February 14, 2009 (Dstmin ∼ −35 nT), the Bx and the Bz component of the tail current magnetic field near its inner edge were about 60 nT, and −60 nT that means that strong cross-tail current have been developed. The tail current parameters at different time moments during February 14, 2009 have been estimated. Solar wind conditions during this event were consistent with those during moderate magnetic storms with minimum Dst of about −100 nT. However, the magnetospheric current systems (magnetopause and cross-tail currents) were located at larger geocentric distances than typical during the 2009 extremely quiet epoch and did not provide the expected Dst magnitude. Very small disturbance on the Earth’s surface was detected consistent with an “inflated” magnetosphere.  相似文献   
994.
Ionosonde data from two equatorial stations in the African sector have been used to study the signatures of four strong geomagnetic storms on the height – electron density profiles of the equatorial ionosphere with the objective of investigating the effects and extent of the effects on the three layers of the equatorial ionosphere. The results showed that strong geomagnetic storms produced effects of varying degrees on the three layers of the ionosphere. Effect of strong geomagnetic storms on the lower layers of the equatorial ionosphere can be significant when compared with effect at the F2-layer. Fluctuations in the height of ionization within the E-layer were as much as 0% to +20.7% compared to −12.5% to +8.3% for the F2-layer. The 2007 version of the International Reference Ionosphere, IRI-07 storm-time model reproduced responses at the E-layer but overestimated the observed storm profiles for the F1- and F2-layers.  相似文献   
995.
The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1–26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented.  相似文献   
996.
The use of active radiation shielding designs has the potential to reduce the radiation exposure received by astronauts on deep-space missions at a significantly lower mass penalty than designs utilizing only passive shielding. Unfortunately, the determination of the radiation exposure inside these shielded environments often involves lengthy and computationally intensive Monte Carlo analysis. In order to evaluate the large trade space of design parameters associated with a magnetic radiation shield design, an analytical model was developed for the determination of flux inside a solenoid magnetic field due to the Galactic Cosmic Radiation (GCR) radiation environment. This analytical model was then coupled with NASA’s radiation transport code, HZETRN, to account for the effects of passive/structural shielding mass. The resulting model can rapidly obtain results for a given configuration and can therefore be used to analyze an entire trade space of potential variables in less time than is required for even a single Monte Carlo run. Analyzing this trade space for a solenoid magnetic shield design indicates that active shield bending powers greater than ∼15 Tm and passive/structural shielding thicknesses greater than 40 g/cm2 have a limited impact on reducing dose equivalent values. Also, it is shown that higher magnetic field strengths are more effective than thicker magnetic fields at reducing dose equivalent.  相似文献   
997.
The Zakharov–Kuznetzov (ZK) equation is derived for nonlinear electrostatic waves in a weakly magnetized plasma in the presence of anisotropic ion pressure and superthermal electrons. The anisotropic ion pressure is defined using Chew–Goldberger–Low (CGL) while a generalized Lorentzian (kappa) distribution is assumed for the non-thermal electrons. The standard reductive perturbation method (RPM) is employed to derive the two dimensional ZK equation for the dynamics of obliquely propagating low frequency ion acoustic wave. The influence of spectral index (kappa) of non-thermal electron on the soliton is discussed in the presence of anisotropic ion pressure in plasmas. It is found that ion pressure anisotropy and superthermality of electrons affect both the width and amplitude of the solitary waves. On the other hand the magnetic field is found to alter the dispersive property of the plasma only, and hence the width of the solitons is affected while the amplitude of the solitary waves is independent of external magnetic field. The numerical results are also presented for illustrations.  相似文献   
998.
A new version of global empirical model for the ionospheric propagation factor, M(3000)F2 prediction is presented. Artificial neural network (ANN) technique was employed by considering the relevant geophysical input parameters which are known to influence the M(3000)F2 parameter. This new version is an update to the previous neural network based M(3000)F2 global model developed by Oyeyemi et al. (2007), and aims to address the inadequacy of the International Reference Ionosphere (IRI) M(3000)F2 model (the International Radio Consultative Committee (CCIR) M(3000)F2 model). The M(3000)F2 has been found to be relatively inaccurate in representing the diurnal structure of the low latitude region and the equatorial ionosphere. In particular, the existing hmF2 IRI model is unable to reproduce the sharp post-sunset drop in M(3000)F2 values, which correspond to a sharp post-sunset peak in the peak height of the F2 layer, hmF2. Data from 80 ionospheric stations globally, including a good number of stations in the low latitude region were considered for this work. M(3000)F2 hourly values from 1987 to 2008, spanning all periods of low and high solar activity were used for model development and verification process. The ability of the new model to predict the M(3000)F2 parameter especially in the low latitude and equatorial regions, which is known to be problematic for the existing IRI model is demonstrated.  相似文献   
999.
The common methodologies used to predict the smooth sunspot number (SSN) at peak (Rmax) and the rise time (Tr) for a cycle are noted. The estimates based on geomagnetic precursors give the best prediction of Rmax for five SSN cycles (20–24). In particular, an empirical technique invoking three-cycle quasi-periodicity (TCQP) in Ap index has made accurate predictions of Rmax and Tr for two consecutive SSN cycles (23 and 24). The dynamo theories are unable to account for TCQP. If it endures in the 21st century the Sun shall enter a Dalton-like grand minimum. It was a period of global cooling. The current status of the ascending phase of cycle 24 is described and the delayed reversal of the solar polar field reversal in the southern hemisphere in September 2013 is noted.  相似文献   
1000.
Lagrangian points L4 and L5 lie at 60° ahead of and behind the Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth–Moon mass ratio. As so, these Lagrangian points represent remarkable positions to host astronomical observatories or space stations. However, this same distance characteristic may be a challenge for periodic servicing mission. This paper studies elliptic trajectories from an Earth circular parking orbit to reach the Moon’s sphere of influence and apply a swing-by maneuver in order to re-direct the path of a spacecraft to a vicinity of the Lagrangian points L4 and L5. Once the geocentric transfer orbit and the initial impulsive thrust have been determined, the goal is to establish the angle at which the geocentric trajectory crosses the lunar sphere of influence in such a way that when the spacecraft leaves the Moon’s gravitational field, its trajectory and velocity with respect to the Earth change in order to the spacecraft arrives at L4 and L5. In this work, the planar Circular Restricted Three Body Problem approximation is used and in order to avoid solving a two boundary problem, the patched-conic approximation is considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号