首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   266篇
  免费   2篇
  国内免费   2篇
航空   107篇
航天技术   59篇
航天   104篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   10篇
  2017年   5篇
  2015年   5篇
  2014年   10篇
  2013年   18篇
  2012年   14篇
  2011年   30篇
  2010年   14篇
  2009年   17篇
  2008年   20篇
  2007年   13篇
  2006年   9篇
  2005年   16篇
  2004年   8篇
  2003年   12篇
  2002年   6篇
  2001年   5篇
  2000年   2篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   4篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1983年   3篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1973年   2篇
  1963年   1篇
排序方式: 共有270条查询结果,搜索用时 15 毫秒
121.
Time series of geocenter coordinates were determined with data of two global navigation satellite systems (GNSSs), namely the U.S. GPS (Global Positioning System) and the Russian GLONASS (Global’naya Nawigatsionnaya Sputnikowaya Sistema). The data was recorded in the years 2008–2011 by a global network of 92 permanently observing GPS/GLONASS receivers. Two types of daily solutions were generated independently for each GNSS, one including the estimation of geocenter coordinates and one without these parameters.  相似文献   
122.
The Earth’s global atmospheric electric circuit depends on the upper and lower atmospheric boundaries formed by the ionosphere and the planetary surface. Thunderstorms and electrified rain clouds drive a DC current (~1 kA) around the circuit, with the current carried by molecular cluster ions; lightning phenomena drive the AC global circuit. The Earth’s near-surface conductivity ranges from 10?7 S?m?1 (for poorly conducting rocks) to 10?2 S?m?1 (for clay or wet limestone), with a mean value of 3.2 S?m?1 for the ocean. Air conductivity inside a thundercloud, and in fair weather regions, depends on location (especially geomagnetic latitude), aerosol pollution and height, and varies from ~10?14 S?m?1 just above the surface to 10?7 S?m?1 in the ionosphere at ~80 km altitude. Ionospheric conductivity is a tensor quantity due to the geomagnetic field, and is determined by parameters such as electron density and electron–neutral particle collision frequency. In the current source regions, point discharge (coronal) currents play an important role below electrified clouds; the solar wind-magnetosphere dynamo and the unipolar dynamo due to the terrestrial rotating dipole moment also apply atmospheric potential differences. Detailed measurements made near the Earth’s surface show that Ohm’s law relates the vertical electric field and current density to air conductivity. Stratospheric balloon measurements launched from Antarctica confirm that the downward current density is ~1 pA m?2 under fair weather conditions. Fortuitously, a Solar Energetic Particle (SEP) event arrived at Earth during one such balloon flight, changing the observed atmospheric conductivity and electric fields markedly. Recent modelling considers lightning discharge effects on the ionosphere’s electric potential (~+250 kV with respect to the Earth’s surface) and hence on the fair weather potential gradient (typically ~130 V?m?1 close to the Earth’s surface. We conclude that cloud-to-ground (CG) lightning discharges make only a small contribution to the ionospheric potential, and that sprites (namely, upward lightning above energetic thunderstorms) only affect the global circuit in a miniscule way. We also investigate the effects of mesoscale convective systems on the global circuit.  相似文献   
123.
124.
125.
Deliberate and unintentional radio transmissions from Earth propagate into space. These transmissions could be detected by extraterrestrial watchers over interstellar distances. This article analyzes the harm and benefits of deliberate and unintentional transmissions relevant to Earth and humanity. Comparing the magnitude of deliberate radio broadcasts intended for messaging to extraterrestrial intelligence (METI) with the background radio spectrum of Earth, we find that METI attempts to date have much lower detectability than emissions from current radio communication technologies on Earth. METI broadcasts are usually transient and several orders of magnitude less powerful than other terrestrial sources, such as astronomical and military radars, which provide the strongest detectable signals. The benefits of radio communication on Earth most probably outweigh the potential harm of detection by extraterrestrial watchers; however, the uncertainty regarding the outcome of contact with extraterrestrial beings creates difficulty in assessing whether or not to engage in long-term and large-scale METI.  相似文献   
126.
ABSTRACT

The ability to mentally represent spatial information is a fundamental cognitive process. To many people, this process feels a bit like visual perception, hence the term ‘spatial visualization’. In this paper, we describe a method for measuring the accuracy of spatial visualization, specifically visualization of a complex path in imaginary space. A critical feature of this method (called Path Visualization) is that it relies on the detection of intersections in a visualized path. Intersection detection is an inherently spatial task that requires a spatial representation. In this paper, we show how the Path Visualization method works, and how it can be customized to address several key research issues in human spatial cognition.  相似文献   
127.
The scanning imaging absorption spectrometer for atmospheric chartography was launched successfully onboard ENVISAT on March 1, 2002. It observes the solar radiation transmitted and backscattered from the atmosphere and reflected from the ground in nadir, limb and occultation viewing modes. Chlorine dioxide (OClO), an important indicator for stratospheric chlorine activation, can be measured in the UV spectral range by differential optical absorption spectroscopy (DOAS).

First results of the DOAS retrieval of OClO slant column densities from the SCIAMACHY nadir measurements are presented and compared to measurements of the global ozone monitoring experiment (GOME), which has successfully measured OClO since 1995. While SCIAMACHY operates in the same orbit, it measures ≈30 min earlier than GOME and has an increased spatial resolution (30 × 60 km2 compared to 40 × 320 km2 for GOME).  相似文献   

128.
The ESA space debris population model MASTER (Meteoroid and Space Debris Terrestrial Environment Reference) considers firings of solid rocket motors (SRM) as a debris source with the associated generation of slag and dust particles. The resulting slag and dust population is a major contribution to the sub-millimetre size debris environment in Earth orbit. The current model version, MASTER-2005, is based on the simulation of 1076 orbital SRM firings which contributed to the long-term debris environment. A comparison of the modelled flux with impact data from returned surfaces shows that the shape and quantity of the modelled SRM dust distribution matches that of recent Hubble Space Telescope (HST) solar array measurements very well. However, the absolute flux level for dust is under-predicted for some of the analysed Long Duration Exposure Facility (LDEF) surfaces. This points into the direction of some past SRM firings not included in the current event database. The most suitable candidates for these firings are the large number of SRM retro-burns of return capsules. Objects released by those firings have highly eccentric orbits with perigees in the lower regions of the atmosphere. Thus, they produce no long-term effect on the debris environment. However, a large number of those firings during the on-orbit time frame of LDEF might lead to an increase of the dust population for some of the LDEF surfaces. In this paper, the influence of SRM retro-burns on the short- and long-term debris environment is analysed. The existing firing database is updated with gathered information of some 800 Russian retro-firings. Each firing is simulated with the MASTER population generation module. The resulting population is compared against the existing background population of SRM slag and dust particles in terms of spatial density and flux predictions.  相似文献   
129.
Michael J. Rycroft   《Space Policy》2006,22(3):158-161
This paper addresses, with examples, the essential need to devise important scientific research questions in order to set the objectives of space missions. However, the crucial objective of the human race is to survive the numerous hazards, both natural and anthropogenic, which may be expected to occur on Earth during the 21st century. With some experts believing that human civilisation may not survive to the end of the century, the main goals for space exploration should first be the preservation of planet Earth as a human habitat and, second, for human beings to settle in another haven, e.g. to colonise Mars. Treating this as an insurance policy, the annual premium for which could be around $16 billion, a globally cooperative plan should now be prepared and agreed. The fundamental message of this article echoes Zubrin's belief that, in order to survive, humanity must become a spacefaring species.  相似文献   
130.
The Rosetta spacecraft has been successfully launched on 2nd March 2004 to its new target comet 67 P/Churyumov-Gerasimenko. The science objectives of the Rosetta Radio Science Investigations (RSI) experiment address fundamental aspects of cometary physics such as the mass and bulk density of the nucleus, its gravity field, its interplanetary orbit perturbed by nongravitational forces, its size and shape, its internal structure, the composition and roughness of the nucleus surface, the abundance of large dust grains, the plasma content in the coma and the combined dust and gas mass flux. The masses of two asteroids, Steins and Lutetia, shall be determined during flybys in 2008 and 2010, respectively. Secondary objectives are the radio sounding of the solar corona during the superior conjunctions of the spacecraft with the Sun during the cruise phase. The radio carrier links of the spacecraft Telemetry, Tracking and Command (TT&C) subsystem between the orbiter and the Earth will be used for these investigations. An Ultrastable oscillator (USO) connected to both transponders of the radio subsystem serves as a stable frequency reference source for both radio downlinks at X-band (8.4 GHz) and S-band (2.3 GHz) in the one-way mode. The simultaneous and coherent dual-frequency downlinks via the High Gain Antenna (HGA) permit separation of contributions from the classical Doppler shift and the dispersive media effects caused by the motion of the spacecraft with respect to the Earth and the propagation of the signals through the dispersive media, respectively. The investigation relies on the observation of the phase, amplitude, polarization and propagation times of radio signals transmitted from the spacecraft and received with ground station antennas on Earth. The radio signals are affected by the medium through which the signals propagate (atmospheres, ionospheres, interplanetary medium, solar corona), by the gravitational influence of the planet on the spacecraft and finally by the performance of the various systems involved both on the spacecraft and on ground.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号