首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   561篇
  免费   180篇
  国内免费   90篇
航空   480篇
航天技术   107篇
综合类   58篇
航天   186篇
  2024年   1篇
  2023年   18篇
  2022年   52篇
  2021年   54篇
  2020年   60篇
  2019年   54篇
  2018年   42篇
  2017年   43篇
  2016年   33篇
  2015年   44篇
  2014年   44篇
  2013年   40篇
  2012年   33篇
  2011年   43篇
  2010年   31篇
  2009年   36篇
  2008年   33篇
  2007年   36篇
  2006年   27篇
  2005年   23篇
  2004年   19篇
  2003年   16篇
  2002年   14篇
  2001年   13篇
  2000年   9篇
  1999年   6篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1993年   1篇
  1990年   1篇
排序方式: 共有831条查询结果,搜索用时 31 毫秒
51.
Leakage performance of floating ring seal in cold/hot state for aero-engine   总被引:1,自引:0,他引:1  
Rotating experimental investigations were carried out to study the oil sealing capability of two different floating ring seals in cold/hot state for aero-engine. High-speed Floating Ring Seal(HFRS) is a seal with the inner diameter of 83.72 mm and maximum speed of 38000 r/min, and Low-speed Floating Ring Seal(LFRS) is another seal with the inner diameter of 40.01 mm and maximum speed of 18000 r/min. In hot state, sealing air with the temperature of 371 K and oil with the temperature of 343 K was employed to model the working conditions of an aero-engine. Comparisons between floating ring seal and labyrinth seal were done to inspect the leakage performance.More attention was paid to the critical pressure ratio where the oil leakage began. Results show that the critical pressure ratio in cold state is obviously larger than that in hot state for both seals. An underlying sealing mechanism for floating ring seal is clarified by the fluid film, which closely associates with the dimensionless parameter of clearance over rotating diameter(2 c/Dr). Another fantastic phenomenon is that the leakage coefficient in hot state, not the leakage magnitude, is unexpectedly larger than that in cold state. Overall, the leakage performance of the floating ring seal is better than the labyrinth seal.  相似文献   
52.
针对高速机动目标的末端拦截问题,研究了拦截弹的制导控制一体化设计算法。首先建立了纵向通道的制导控制一体化模型,利用非线性状态变换将其转换为易于控制算法设计的标准形式,并将目标机动干扰从不确定项中分离出来。然后考虑系统的非匹配不确定性,将滑模控制与反演控制相结合,设计了拦截弹的一体化控制算法。仿真结果验证了所设计算法的有效性和鲁棒性。  相似文献   
53.
在研究了倒立摆系统动力学模型的基础上,提出了一种积分滑模变结构的控制方法。通过设计积分性质的非线性滑模面,可以减少系统静差,提高控制精度,系统鲁棒性能获得了很好的保存。仿真证明,该方法能够在较短时间内实现系统的稳定,提高系统的控制精度,使倒立摆系统具有更高的稳定性和鲁棒性。  相似文献   
54.
讨论了弹性金属密封的弹塑性密封机理,回顾了国内外低温液体火箭发动机弹性金属密封技术的发展历程。结合高压补燃液氧/煤油发动机的工作特点,分析了发动机管路静密封所采用的Э形弹性金属密封、K形弹性金属密封、碟形弹性金属密封以及软金属密封的密封特性,从密封结构设计、密封材料选择、预紧载荷控制以及加工制造工艺四个方面总结并提出了影响高压补燃液氧/煤油发动机弹性金属密封性能的技术要点。针对当前国内高压补燃液氧/煤油发动机弹性金属密封的理论研究及工程应用现状,建议加强弹性金属密封技术的基础理论研究,完善弹性金属密封的结构设计方法并进行相应的预紧力偏差设计研究。  相似文献   
55.
变压器突发短路故障,给生产和人们生活造成了巨大损失。采用油色谱分析、绝缘电阻试验、绕组直阻试验和绕组变形试验的“四项分析”方法,对电力系统排除故障、安全运行有较大的实用价值。  相似文献   
56.
为分析直接侧向力/气动力复合控制中的影响因素对控制效果的影响,给出了复合控制拦截器的典型布局,建立了直接侧向力/气动力复合控制分配模型;采用自适应动态逆方法形成虚拟控制律实现拦截器姿态控制,并进行了仿真验证与分析。仿真结果表明,不同发动机总数、发动机开关机周期和推力大小等因素对最终控制效果有直接的影响,且发动机开关机周期与推力的共同作用对控制效果影响明显。  相似文献   
57.
三相四桥臂逆变器可以带不平衡负载甚至单相负载。针对三相四桥臂逆变 器,提出了一种新的重复控制算法。该算法相对于传统恒压恒频(CVCF) 控制算法具 有设计简单, 不需要dq 变换, 在提高电压稳态精度的同时, 还降低了输出电压总谐波 含量(THD)。系统分析了三相四桥臂逆变器电路模型,得到整个系统的传递函数,分 析了系统的稳态误差和稳定性。最后通过仿真和试验验证了系统输出电压稳态精度高, 谐波含量低,且能有效抑制由不平衡负载引起的输出电压不平衡。  相似文献   
58.
先进战斗机气动弹性设计综述   总被引:3,自引:2,他引:3  
中国新一代战斗机的研发引领了飞机设计领域各项技术的创新和发展。针对研制总要求和任务特殊性,中国航空工业成都飞机设计研究所气动弹性专业建立了精益气动弹性设计与验证技术体系。基于多学科优化设计流程,开展了旨在提高飞机气动弹性品质的关键技术攻关、气弹优化设计和分析工作。完成了考虑含全动翼面结构非线性的全机动力学特性地面试验、亚跨超声速颤振模型风洞试验和气动弹性飞行试验验证。在较短的研发周期内,成功实现气动弹性设计目标,为新一代战斗机的成功研制提供了技术保障。描述了该飞机气动弹性设计历程、主要技术工作以及在此基础上取得的技术进步、能力提升以及具有研究所特色的气动弹性设计知识工程建设。  相似文献   
59.
雷正伟  米东  徐章遂  敦怡 《固体火箭技术》2007,30(3):269-271,274
在超声检测中,应力是通过超声时间延迟来测量的,而超声回波的时间延迟对噪声非常敏感。噪声严重影响应力的测量精度,噪声引起的时间延迟甚至与应力引起的时间延迟处于同一量级。而以往消噪处理都是基于盲信息,没有考虑系统响应特点,消噪效果不好,需一种有效的消噪方法。提出了一种基于倒谱模型新的滤波处理技术,从系统响应的角度,建立超声通道的小波倒谱模型,并通过对钢轨应力测试信号进行滤波处理,试验结果令人满意。  相似文献   
60.
考虑多架系留无人机(UAV)空中基站为多小区提供空地双向通信服务时,针对地面用户数目分布不均匀和多机协同服务同频干扰严重的问题,提出了一种联合优化空中基站高度和链路传输方向的吞吐量优化算法。该方法通过使用最大同频链路准则和就近服务准则确定了同频链路配对和无人机/用户配对,通过优化空中基站高度和链路传输方向提升了系统平均吞吐量,并减少了用户间的同频干扰。多种场景下验证结果均显示,所提方法显著优于其他非联合优化的对比方法,当拥塞小区用户数目是非拥塞小区用户数目的1~36倍时,相比于不联合优化链路传输方向和空中基站高度的对比方法,所提方法可提升系统平均吞吐量8倍左右。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号