首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2663篇
  免费   2篇
  国内免费   19篇
航空   1317篇
航天技术   1050篇
综合类   10篇
航天   307篇
  2019年   18篇
  2018年   24篇
  2017年   18篇
  2016年   17篇
  2014年   47篇
  2013年   58篇
  2012年   51篇
  2011年   82篇
  2010年   60篇
  2009年   104篇
  2008年   157篇
  2007年   63篇
  2006年   66篇
  2005年   69篇
  2004年   79篇
  2003年   80篇
  2002年   51篇
  2001年   75篇
  2000年   49篇
  1999年   63篇
  1998年   80篇
  1997年   49篇
  1996年   61篇
  1995年   78篇
  1994年   76篇
  1993年   49篇
  1992年   61篇
  1991年   31篇
  1990年   30篇
  1989年   70篇
  1988年   26篇
  1987年   28篇
  1986年   30篇
  1985年   119篇
  1984年   68篇
  1983年   57篇
  1982年   58篇
  1981年   103篇
  1980年   34篇
  1979年   26篇
  1978年   24篇
  1977年   28篇
  1976年   18篇
  1975年   31篇
  1974年   19篇
  1973年   25篇
  1972年   20篇
  1971年   16篇
  1970年   24篇
  1969年   26篇
排序方式: 共有2684条查询结果,搜索用时 203 毫秒
111.
Ergun  R.E.  Carlson  C.W.  Mozer  F.S.  Delory  G.T.  Temerin  M.  McFadden  J.P.  Pankow  D.  Abiad  R.  Harvey  P.  Wilkes  R.  Primbsch  H.  Elphic  R.  Strangeway  R.  Pfaff  R.  Cattell  C.A. 《Space Science Reviews》2001,98(1-2):67-91
We describe the electric field sensors and electric and magnetic field signal processing on the FAST (Fast Auroral SnapshoT) satellite. The FAST satellite was designed to make high time resolution observations of particles and electromagnetic fields in the auroral zone to study small-scale plasma interactions in the auroral acceleration region. The DC and AC electric fields are measured with three-axis dipole antennas with 56 m, 8 m, and 5 m baselines. A three-axis flux-gate magnetometer measures the DC magnetic field and a three-axis search coil measures the AC magnetic field. A central signal processing system receives all signals from the electric and magnetic field sensors. Spectral coverage is from DC to 4 MHz. There are several types of processed data. Survey data are continuous over the auroral zone and have full-orbit coverage for fluxgate magnetometer data. Burst data include a few minutes of a selected region of the auroral zone at the highest time resolution. A subset of the burst data, high speed burst memory data, are waveform data at 2×106 sample s–1. Electric field and magnetic field data are primarily waveforms and power spectral density as a function of frequency and time. There are also various types of focused data processing, including cross-spectral analysis, fine-frequency plasma wave tracking, high-frequency polarity measurement, and wave-particle correlations.  相似文献   
112.
A new constant false alarm rate (CFAR) test termed signal-plus-order statistic CFAR (S+OS) using distributed sensors is developed. The sensor modeling assumes that the returns of the test cells of different sensors are all independent and identically distributed In the S+OS scheme, each sensor transmits its test sample and a designated order statistic of its surrounding observations to the fusion center. At the fusion center, the sum of the samples of the test cells is compared with a constant multiplied by a function of the order statistics. For a two-sensor network, the functions considered are the minimum of the order statistics (mOS) and the maximum of the order statistics (MOS). For detecting a Rayleigh fluctuating target in Gaussian noise, closed-form expressions for the false alarm and detection probabilities are obtained. The numerical results indicate that the performance of the MOS detector is very close to that of a centralized OS-CFAR and it performs considerably better than the OS-CFAR detector with the AND or the OR fusion rule. Extension to an N-sensor network is also considered, and general equations for the false alarm probabilities under homogeneous and nonhomogeneous background noise are presented.  相似文献   
113.
This instrument is designed to make measurements of the full three-dimensional distribution of suprathermal electrons and ions from solar wind plasma to low energy cosmic rays, with high sensitivity, wide dynamic range, good energy and angular resolution, and high time resolution. The primary scientific goals are to explore the suprathermal particle population between the solar wind and low energy cosmic rays, to study particle accleration and transport and wave-particle interactions, and to monitor particle input to and output from the Earth's magnetosphere.Three arrays, each consisting of a pair of double-ended semi-conductor telescopes each with two or three closely sandwiched passivated ion implanted silicon detectors, measure electrons and ions above 20 keV. One side of each telescope is covered with a thin foil which absorbs ions below 400 keV, while on the other side the incoming <400 keV electrons are swept away by a magnet so electrons and ions are cleanly separated. Higher energy electrons (up to 1 MeV) and ions (up to 11 MeV) are identified by the two double-ended telescopes which have a third detector. The telescopes provide energy resolution of E/E0.3 and angular resolution of 22.5°×36°, and full 4 steradian coverage in one spin (3 s).Top-hat symmetrical spherical section electrostatic analyzers with microchannel plate detectors are used to measure ions and electrons from 3 eV to 30 keV. All these analyzers have either 180° or 360° fields of view in a plane, E/E0.2, and angular resolution varying from 5.6° (near the ecliptic) to 22.5°. Full 4 steradian coverage can be obtained in one-half or one spin. A large and a small geometric factor analyzer measure ions over the wide flux range from quiet-time suprathermal levels to intense solar wind fluxes. Similarly two analyzers are used to cover the wide range of electron fluxes. Moments of the electron and ion distributions are computed on board.In addition, a Fast Particle Correlator combines electron data from the high sensitivity electron analyzer with plasma wave data from the WAVE experiment (Bougeretet al., in this volume) to study wave-particle interactions on fast time scales. The large geometric factor electron analyzer has electrostatic deflectors to steer the field of view and follow the magnetic field to enhance the correlation measurements.  相似文献   
114.
The solar wind termination shock is described as a multi-fluid phenomenon taking into account the magnetohydrodynamic self-interaction of a multispecies plasma consisting of solar wind ions, pick-up ions and shock-generated anomalous cosmic ray particles. The spatial diffusion of these high energy particles relative to the resulting, pressure-modified solar wind flow structure is described by a coupled system of differential equations describing mass-, momentum-, and energy-flow continuities for all plasma components. The energy loss due to escape of energetic particles (MeV) from the precursor into the inner heliosphere is taken into account. We determine the integrated properties of the anomalous cosmic ray gas and the low-energy solar wind. Also the variation of the compression ratio of the shock structure is quantitatively determined and is related to the pick-up ion energization efficiency and to the mean energy of the downstream anomalous cosmic ray particles. The variation of the resulting shock structure and of the solar wind sheath plasma extent beyond the shock is discussed with respect to its consequences for the LISM neutral gas filtration and the threedimensional shape of the heliosphere.  相似文献   
115.
We address the question of design and optimal control of a class of dual-spacecraft interferometric imaging formations. The first main contribution is that we combine two ideas introduced separately in the literature and propose a maneuver that offers improved imaging performance. We then formulate an optimal control problem to minimize fuel consumption and maximize image quality by minimizing the relative speed, which is proportional to the signal-to-noise ratio (SNR) of the reconstructed image. We show that the necessary conditions are also sufficient and that the resulting optimal control is unique. Finally, we apply a continuation method to solve for the unique optimal trajectory.  相似文献   
116.
Although the auroral substorm has been long regarded as a manifestation of the magnetospheric substorm, a direct relation of active auroras to certain magnetospheric processes is still debatable. To investigate the relationship, we combine the data of the UV imager onboard the Polar satellite with plasma and magnetic field measurements by the Geotail spacecraft. The poleward edge of the auroral bulge, as determined from the images obtained at the LHBL passband, is found to be conjugated with the region where the oppositely directed fast plasma flows observed in the near-Earth plasma sheet during substorms are generated. We conclude that the auroras forming the bulge are due to the near-Earth reconnection process. This implies that the magnetic flux through the auroral bulge is equal to the flux dissipated in the magnetotail during the substorm. Comparison of the magnetic flux through the auroral bulge with the magnetic flux accumulated in the tail lobe during the growth phase shows that these parameters have the comparable values. This is a clear evidence of the loading–unloading scheme of substorm development. It is shown that the area of the auroral bulge developing during substorm is proportional to the total (magnetic plus plasma) pressure decrease in the magnetotail. These findings stress the importance of auroral bulge observations for monitoring of substorm intensity in terms of the magnetic flux and energy dissipation.  相似文献   
117.
The Pre-CME Sun     
The coronal mass ejection (CME) phenomenon occurs in closed magnetic field regions on the Sun such as active regions, filament regions, transequatorial interconnection regions, and complexes involving a combination of these. This chapter describes the current knowledge on these closed field structures and how they lead to CMEs. After describing the specific magnetic structures observed in the CME source region, we compare the substructures of CMEs to what is observed before eruption. Evolution of the closed magnetic structures in response to various photospheric motions over different time scales (convection, differential rotation, meridional circulation) somehow leads to the eruption. We describe this pre-eruption evolution and attempt to link them to the observed features of CMEs. Small-scale energetic signatures in the form of electron acceleration (signified by nonthermal radio bursts at metric wavelengths) and plasma heating (observed as compact soft X-ray brightening) may be indicative of impending CMEs. We survey these pre-eruptive energy releases using observations taken before and during the eruption of several CMEs. Finally, we discuss how the observations can be converted into useful inputs to numerical models that can describe the CME initiation.  相似文献   
118.
Cairns  Iver H.  Knock  S.A.  Robinson  P.A.  Kuncic  Z. 《Space Science Reviews》2003,107(1-2):27-34
Recent data and theory for type II solar radio bursts are reviewed, focusing on a recent analytic quantitative theory for interplanetary type II bursts. The theory addresses electron reflection and acceleration at the type II shock, formation of electron beams in the foreshock, and generation of Langmuir waves and the type II radiation there. The theory's predictions as functions of the shock and plasma parameters are summarized and discussed in terms of space weather events. The theory is consistent with available data, has explanations for radio-loud/quiet coronal mass ejections (CMEs) and why type IIs are bursty, and can account for empirical correlations between type IIs, CMEs, and interplanetary disturbances. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
119.
Detection of small objects in clutter using a GA-RBF neural network   总被引:5,自引:0,他引:5  
Detection of small objects in a radar or satellite image is an important problem with many applications. Due to a recent discovery that sea clutter, the electromagnetic wave backscatter from a sea surface, is chaotic rather than purely random, computational intelligence techniques such as neural networks have been applied to reconstruct the chaotic dynamic of sea clutter. The reconstructed sea clutter dynamical system which usually takes the form of a nonlinear predictor does not only provide a model of the sea scattering phenomenon, but it can also be used to detect the existence of small targets such as fishing boats and small fragments of icebergs by observing abrupt changes in the prediction error. We applied a genetic algorithm (GA) to obtain an optimal reconstruction of sea clutter dynamic based on a radial basis function (RBF) neural network. This GA-RBF uses a hybrid approach that employes a GA to search for the optimum values of the following RBF parameters: centers, variance, and number of hidden nodes, and uses the least square method to determine the weights. It is shown here that if the functional form of an unknown nonlinear dynamical system can be represented exactly using an RBF net (i.e., no approximation error), this GA-RBF approach can reconstruct the exact dynamic from its time series measurements. In addition to the improved accuracy in modeling sea clutter dynamic, the GA-RBF is also shown to enhance the detectability of small objects embedded in the sea. Using real-life radar data that are collected in the east coast of Canada by two different radar systems: a ground-based radar and a satellite equipped with synthetic aperture radar (SAR), we show that the GA-RBF network is a reliable detector for small surface targets in various sea conditions and is practical for real-life search and rescue, navigation, and surveillance applications  相似文献   
120.
The lens epithelium is the initiation site for the development of radiation induced cataracts. Radiation in the cortex and nucleus interacts with proteins, while in the epithelium, experimental results reveal mutagenic and cytotoxic effects. It is suggested that incorrectly repaired DNA damage may be lethal in terms of cellular reproduction and also may initiate the development of mutations or transformations in surviving cells. The occurrence of such genetically modified cells may lead to lens opacification. For a quantitative risk estimation for astronauts and space travelers it is necessary to know the relative biological effectiveness (RBE), because the spacial and temporal distribution of initial physical damage induced by cosmic radiation differ significantly from that of X-rays. RBEs for the induction of DNA strand breaks and the efficiency of repair of these breaks were measured in cultured diploid bovine lens epithelial cells exposed to different LET irradiation to either 300 kV X-rays or to heavy ions at the UNILAC accelerator at GSI. Accelerated ions from Z=8 (O) to Z=92 (U) were used. Strand breaks were measured by hydroxyapatite chromatography of alkaline unwound DNA (overall strand breaks). Results showed that DNA damage occurs as a function of dose, of kinetic energy and of LET. For particles having the same LET the severity of the DNA damage increases with dose. For a given particle dose, as the LET rises, the numbers of DNA strand breaks increase to a maximum and then reach a plateau or decrease. Repair kinetics depend on the fluence (irradiation dose). At any LET value, repair is much slower after heavy ion exposure than after X-irradiation. For ions with an LET of less than 10,000 keV micrometers-1 more than 90 percent of the strand breaks induced are repaired within 24 hours. At higher particle fluences, especially for low energetic particles with a very high local density of energy deposition within the particle track, a higher proportion of non-rejoined breaks is found, even after prolonged periods of incubation. At the highest LET value (16,300 keV micrometers-1) no significant repair is observed. These LET-dependencies are consistent with the current mechanistic model for radiation induced cataractogenesis which postulates that genomic damage to the surviving fraction of epithelial cells is responsible for lens opacification.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号