首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3574篇
  免费   8篇
  国内免费   10篇
航空   1584篇
航天技术   1285篇
综合类   181篇
航天   542篇
  2021年   26篇
  2019年   29篇
  2018年   72篇
  2017年   38篇
  2016年   38篇
  2015年   21篇
  2014年   86篇
  2013年   110篇
  2012年   80篇
  2011年   134篇
  2010年   77篇
  2009年   147篇
  2008年   177篇
  2007年   96篇
  2006年   88篇
  2005年   93篇
  2004年   98篇
  2003年   103篇
  2002年   168篇
  2001年   168篇
  2000年   54篇
  1999年   87篇
  1998年   101篇
  1997年   81篇
  1996年   102篇
  1995年   120篇
  1994年   85篇
  1993年   52篇
  1992年   78篇
  1991年   33篇
  1990年   28篇
  1989年   67篇
  1988年   26篇
  1987年   27篇
  1986年   29篇
  1985年   113篇
  1984年   100篇
  1983年   62篇
  1982年   85篇
  1981年   111篇
  1980年   27篇
  1979年   18篇
  1978年   25篇
  1977年   23篇
  1975年   20篇
  1974年   25篇
  1972年   21篇
  1971年   21篇
  1970年   21篇
  1969年   24篇
排序方式: 共有3592条查询结果,搜索用时 531 毫秒
991.
Infrared signature studies of aerospace vehicles   总被引:8,自引:0,他引:8  
Infrared (IR) emissions from aircraft are used to detect, track, and lock-on to the target. MAN Portable Air Defence Systems (MANPADS) have emerged as a major cause of aircraft and helicopter loss. Therefore, IR signature studies are important to counter this threat for survivability enhancement, and are an important aspect of stealth technology. This paper reviews contemporary developments in this discipline, with particular emphasis on IR signature prediction from aerospace vehicles. The role of atmosphere in IR signature analysis, and relation between IR signature level and target susceptibility are illustrated. Also, IR signature suppression systems and countermeasure techniques are discussed, to highlight their effectiveness and implications in terms of penalties.  相似文献   
992.
Mercury’s surface is thought to be covered with highly space-weathered silicate material. The regolith is composed of material accumulated during the time of planetary formation, and subsequently from comets, meteorites, and the Sun. Ground-based observations indicate a heterogeneous surface composition with SiO2 content ranging from 39 to 57 wt%. Visible and near-infrared spectra, multi-spectral imaging, and modeling indicate expanses of feldspathic, well-comminuted surface with some smooth regions that are likely to be magmatic in origin with many widely distributed crystalline impact ejecta rays and blocky deposits. Pyroxene spectral signatures have been recorded at four locations. Although highly space weathered, there is little evidence for the conversion of FeO to nanophase metallic iron particles (npFe0), or “iron blebs,” as at the Moon. Near- and mid-infrared spectroscopy indicate clino- and ortho-pyroxene are present at different locations. There is some evidence for no- or low-iron alkali basalts and feldspathoids. All evidence, including microwave studies, point to a low iron and low titanium surface. There may be a link between the surface and the exosphere that may be diagnostic of the true crustal composition of Mercury. A structural global dichotomy exists with a huge basin on the side not imaged by Mariner 10. This paper briefly describes the implications for this dichotomy on the magnetic field and the 3 : 2 spin : orbit coupling. All other points made above are detailed here with an account of the observations, the analysis of the observations, and theoretical modeling, where appropriate, that supports the stated conclusions.  相似文献   
993.
The design, implementation, and performance of a video bandwidth compression system is described. In this system, compression is obtained by several methods including the use of DCT/DCPM hybrid coding, frame rate reduction, and resolution reduction. The overall compression ratio is up to 1000:1. The hardware-constrained design of the DCT and the DPCM is described and a new method is derived to solve the optimum integer bit-assignment problem associated with the block quantization process in the DPCM. Computer simulation results are presented which predict that the performance of the system using the derived optimal bit assignment method is superior to those obtained by other bit assignment methods. The real-time hybrid coding system design is optimized for a set of ?modified? average statistics to compress a wide variety of input video images. This approach eliminates the problem of nonzero dc mean value which could otherwise cause serious degradations in the system performance. The compression system is fully implemented and the quality of the reconstructed video as predicted by computer simulation has been demonstrated by the actual hardware performance. The PSNR of the reconstructed imagery is in excess of 36 dB at 2 bits per pixel.  相似文献   
994.
The record of dynamical structure reveals a systematic variation that operates coherently with the 11-yr variation of UV irradiance. Involving periods shorter than 5 years, the systematic variation reflects the influence of the QBO on the polar-night vortex. It has the same basic structure as interannual changes associated with the residual mean circulation of the stratosphere. A signature of the solar cycle also appears in the direct correlation to solar flux, as recovered through regression of the entire monthly record. That signature, however, is sharply enhanced around solstice, when the residual circulation is active, and during extremal phases of the QBO. In the tropics, the solar signature follows, throughout the year, from a decadal modulation in the frequency of the QBO. The modulation is manifested to either side of the QBO’s mean frequency, in two spectral peaks where the QBO dwells: one at (24 months)−1, reflecting a Biennial Oscillation (BO), and another at (36 months)-1. Intrinsic to the QBO, those peaks are separated from its mean frequency by ∼11 years−1.Through the QBO’s residual circulation, the decadal modulation introduces anomalies in the subtropics, with symmetry about the equator. Accompanying anomalous temperature in the subtropics is a stronger signature over the winter pole. Discovered by Labitzke and van Loon 1988, that solar signature reflects anomalous downwelling of the Brewer-Dobson circulation. It is shown to follow through the BO, which is intrinsic to the QBO and its modulation of the polar-night vortex.  相似文献   
995.
A multispectral imager has been developed for a rendezvous mission with the near-Earth asteroid, 433 Eros. The Multi-Spectral Imager (MSI) on the Near-Earth Asteroid Rendezvous (NEAR) spacecraft uses a five-element refractive optical telescope, has a field of view of 2.93 × 2.25°, a focal length of 167.35 mm, and has a spatial resolution of 16.1 × 9.5 m at a range of 100 km. The spectral sensitivity of the instrument spans visible to near infrared wavelengths, and was designed to provide insight into the nature and fundamental properties of asteroids and comets. Seven narrow band spectral filters were chosen to provide multicolor imaging and to make comparative studies with previous observations of S asteroids and measurements of the characteristic absorption in Fe minerals near 1 µm. An eighth filter with a much wider spectral passband will be used for optical navigation and for imaging faint objects, down to visual magnitude of +10.5. The camera has a fixed 1 Hz frame rate and the signal intensities are digitized to 12 bits. The detector, a Thomson-CSF TH7866A Charge-Coupled Device, permits electronic shuttering which effectively varies the dynamic range over an additional three orders of magnitude. Communication with the NEAR spacecraft occurs via a MIL-STD-1553 bus interface, and a high speed serial interface permits rapid transmission of images to the spacecraft solid state recorder. Onboard image processing consists of a multi-tiered data compression scheme. The instrument was extensively tested and calibrated prior to launch; some inflight calibrations have already been completed. This paper presents a detailed overview of the Multi-Spectral Imager and its objectives, design, construction, testing and calibration.  相似文献   
996.
Analytical studies of reconnection have, for the most part, been confined to steady and uniform current sheet geometries. In contrast to these implifications, natural phenomena associated with the presence of current sheets indicate highly non-uniform structure and time-varying behaviour. Examples include the violent outbursts of energy on the Sun known as solar flares, and magnetospheric phenomena such as flux transfer events, plasmoids, and auroral activity. Unlike the theoretical models, reconnection therefore occurs in a highly dynamic and structured plasma environment. In this article we review the mathematical tools and techniques which are available to formulate models capable of describing the effects of reconnection in such situations. We confine attention to variants of the reconnection model first discussed by Petschek in the 1960s, in view of its successful application in predicting and interpreting phenomena in the terrestrial magnetosphere. The analysis of Petschek-type reconnection is based on the equations of ideal magnetohydrodynamics (MHD), which describe the large-scale behaviour of the magnetic field and plasma flow outside the diffusion region, which we determine as a localised part of the current sheet in which reconnection is initiated. The approach we adopt here is to transform the MHD equations into a Lagrangian or so-called 'frozen-in' coordinate system. In this coordinate system, the equation of motion transforms into a set of coupled nonlinear equations, in which the presence of inhomogeneous magnetic fields and/or plasma flows gives rise to a term similar to that which appears in the study of the ordinary string equation in a non-homogeneous medium. As demonstrated here, this approach not only clarifies and highlights the effects of such non-uniformities, it also simplifies the solution of the original set of MHD equations. In particular, this is true for those types of problem in which the total pressure can be considered as a known quantity from the outset. To illustrate the method, we solve several 2D problems involving magnetic field and flow non-uniformities: reconnection in a stagnation-point flow geometry with antiparallel magnetic fields; reconnection in a Y-type magnetic field geometry with and without velocity shear across the current sheet; and reconnection in a force-free magnetic field geometry with field lines of the form xy = const. These case examples, chosen for their tractability, each incorporate some aspects of the field and flow geomtries encountered in solar-terrestrial applications, and they provide a starting point for further analytical as well as numerical studies of reconnection.  相似文献   
997.
For pt. I see ibid., vol. 37, no. 4, pp. 1194-1206 (2001).This paper presents the derivation of a polarimetric coherent adaptive scheme to detect a radar target against a non-Gaussian background. This completes the results presented in Part I for the Gaussian background. A Texture Free-Generalized Likelihood Ratio Test (TF-GLRT) detector is derived that exploits the polarimetric characteristics of the received radar echoes to improve the detection performance. The proposed polarimetric detector is shown to have Constant False Alarm Rate (CFAR) when operating against compound-Gaussian clutter with unknown parameters. Its performance is fully characterized by both theoretical analysis and simulation. Moreover, the application to recorded radar data demonstrates the performance improvement achievable in practice  相似文献   
998.
The composition of planetesimals depends upon the epoch and the location of their formation in the solar nebula. Meteorites produced in the hot inner nebula contain refractory compounds. Volatiles were present in icy planetesimals and cometesimals produced in the cold outer nebula. However, the mechanism responsible for their trapping is still controversial. We argue for a general scenario valid in all regions of the turbulent nebula where water condensed as a crystalline ice (Hersant et al., 2004). Volatiles were trapped in the form of clathrate hydrates in the continuously cooling nebula. The epoch of clathration of a given species depends upon the temperature and the pressure required for the stability of the clathrate hydrate. The efficiency of the mechanism depends upon the local amount of ice available. This scenario is the only one so far which proposes a quantitative interpretation of the non detection of N2 in several comets of the Oort cloud (Iro et al., 2003). It may explain the large variation of the CO abundance observed in comets and predicts an Ar/O ratio much less than the upper limit of 0.1 times the solar ratio estimated on C/2001 A2 (Weaver et al., 2002). Under the assumption that the amount of water ice present at 5 AU was higher than the value corresponding to the solar O/H ratio by a factor 2.2 at least, the clathration scenario reproduces the quasi uniform enrichment with respect to solar of the Ar, Kr, Xe, C, N and S elements measured in Jupiter by the Galileo probe. The interpretation of the non-uniform enrichment in C, N and S in Saturn requires that ice was less abundant at 10 AU than at 5 AU so that CO and N2 were not clathrated in the feeding zone of the planet while CH4, NH3 and H2S were. As a result, the 14N/15N ratio in Saturn should be intermediate between that in Jupiter and the terrestrial ratio. Ar and Kr should be solar while Xe should be enriched by a factor 17. The enrichments in C, N and S in Uranus and Neptune suggest that available ice was able to form clathrates of CH4, CO and the NH3 hydrate, but not the clathrate of N2. The enrichment of oxygen by a factor 440 in Neptune inferred by Lodders and Fegley (1994) from the detection of CO in the troposphere of the planet is higher by at least a factor 2.5 than the lower limit of O/H required for the clathration of CO and CH4 and for the hydration of NH3. If CO detected by Encrenaz et al. (2004) in Uranus originates from the interior of the planet, the O/H ratio in the envelope must be around of order of 260 times the solar ratio, then also consistent with the trapping of detected volatiles by clathration. It is predicted that Ar and Kr are solar in the two planets while Xe would be enriched by a factor 30 to 70. Observational tests of the validity of the clathration scenario are proposed.  相似文献   
999.
We review results of correlated IR, optical and X-ray observations of GX 339-4 made from March 1981 through May 1984. In the soft X-ray state, the object does not show outstanding optical and X-ray variability. Night-to-night smooth optical variations of 0.3 magnitudes were however present during one observing run. In contrast, the hard X-ray state is characterised by strong erratic optical and X-ray fluctuations on time scales from 20 milliseconds to seconds, as well as 7 to 20 second quasi-periodic oscillations. The optical counterpart appears much redder in the IR during the hard state. Particular attention is drawn to the hard to soft X-ray transition which occured in June 1981. The shape of the IR to X-ray energy distribution is discussed. The unusual features of this black hole candidate are examined in the framework of the current theories of accretion.Based partly on observations obtained at the European Southern Observatory, La Silla, Chile.  相似文献   
1000.
We discuss data of light noble gases from the solar wind implanted into a metallic glass target flown on the Genesis mission. Helium and neon isotopic compositions of the bulk solar wind trapped in this target during 887 days of exposure to the solar wind do not deviate significantly from the values in foils of the Apollo Solar Wind Composition experiments, which have been exposed for hours to days. In general, the depth profile of the Ne isotopic composition is similar to those often found in lunar soils, and essentially very well reproduced by ion-implantation modelling, adopting the measured velocity distribution of solar particles during the Genesis exposure and assuming a uniform isotopic composition of solar wind neon. The results confirm that contributions from high-energy particles to the solar wind fluence are negligible, which is consistent with in-situ observations. This makes the enigmatic “SEP-Ne” component, apparently present in lunar grains at relatively large depth, obsolete. 20Ne/ 22Ne ratios in gas trapped very near the metallic glass surface are up to 10% higher than predicted by ion implantation simulations. We attribute this superficially trapped gas to very low-speed, current-sheet-related solar wind, which has been fractionated in the corona due to inefficient Coulomb drag.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号