首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4334篇
  免费   36篇
  国内免费   22篇
航空   1911篇
航天技术   1566篇
综合类   19篇
航天   896篇
  2021年   47篇
  2019年   33篇
  2018年   100篇
  2017年   76篇
  2016年   64篇
  2015年   25篇
  2014年   112篇
  2013年   132篇
  2012年   111篇
  2011年   204篇
  2010年   144篇
  2009年   221篇
  2008年   223篇
  2007年   119篇
  2006年   96篇
  2005年   118篇
  2004年   127篇
  2003年   150篇
  2002年   88篇
  2001年   124篇
  2000年   72篇
  1999年   89篇
  1998年   112篇
  1997年   82篇
  1996年   99篇
  1995年   124篇
  1994年   82篇
  1993年   78篇
  1992年   107篇
  1991年   39篇
  1990年   33篇
  1989年   81篇
  1988年   39篇
  1987年   34篇
  1986年   33篇
  1985年   129篇
  1984年   97篇
  1983年   87篇
  1982年   95篇
  1981年   120篇
  1980年   52篇
  1979年   42篇
  1978年   42篇
  1977年   32篇
  1976年   33篇
  1975年   35篇
  1974年   32篇
  1972年   18篇
  1970年   22篇
  1969年   25篇
排序方式: 共有4392条查询结果,搜索用时 15 毫秒
131.
In 1998, Comet 9P/Tempel 1 was chosen as the target of the Deep Impact mission (A’Hearn, M. F., Belton, M. J. S., and Delamere, A., Space Sci. Rev., 2005) even though very little was known about its physical properties. Efforts were immediately begun to improve this situation by the Deep Impact Science Team leading to the founding of a worldwide observing campaign (Meech et al., Space Sci. Rev., 2005a). This campaign has already produced a great deal of information on the global properties of the comet’s nucleus (summarized in Table I) that is vital to the planning and the assessment of the chances of success at the impact and encounter. Since the mission was begun the successful encounters of the Deep Space 1 spacecraft at Comet 19P/Borrelly and the Stardust spacecraft at Comet 81P/Wild 2 have occurred yielding new information on the state of the nuclei of these two comets. This information, together with earlier results on the nucleus of comet 1P/Halley from the European Space Agency’s Giotto, the Soviet Vega mission, and various ground-based observational and theoretical studies, is used as a basis for conjectures on the morphological, geological, mechanical, and compositional properties of the surface and subsurface that Deep Impact may find at 9P/Tempel 1. We adopt the following working values (circa December 2004) for the nucleus parameters of prime importance to Deep Impact as follows: mean effective radius = 3.25± 0.2 km, shape – irregular triaxial ellipsoid with a/b = 3.2± 0.4 and overall dimensions of ∼14.4 × 4.4 × 4.4 km, principal axis rotation with period = 41.85± 0.1 hr, pole directions (RA, Dec, J2000) = 46± 10, 73± 10 deg (Pole 1) or 287± 14, 16.5± 10 deg (Pole 2) (the two poles are photometrically, but not geometrically, equivalent), Kron-Cousins (V-R) color = 0.56± 0.02, V-band geometric albedo = 0.04± 0.01, R-band geometric albedo = 0.05± 0.01, R-band H(1,1,0) = 14.441± 0.067, and mass ∼7×1013 kg assuming a bulk density of 500 kg m−3. As these are working values, {i.e.}, based on preliminary analyses, it is expected that adjustments to their values may be made before encounter as improved estimates become available through further analysis of the large database being made available by the Deep Impact observing campaign. Given the parameters listed above the impact will occur in an environment where the local gravity is estimated at 0.027–0.04 cm s−2 and the escape velocity between 1.4 and 2 m s−1. For both of the rotation poles found here, the Deep Impact spacecraft on approach to encounter will find the rotation axis close to the plane of the sky (aspect angles 82.2 and 69.7 deg. for pole 1 and 2, respectively). However, until the rotation period estimate is substantially improved, it will remain uncertain whether the impactor will collide with the broadside or the ends of the nucleus.  相似文献   
132.
We report initial measurements from the ULECA sensor of the Max-Planck-Institut/University of Maryland experiment on ISEE-1. ULECA is an electrostatic deflection — total energy sensor consisting of a collimator, deflection analyzer and an array of solid state detectors. The position of a given detector, which determines the energy per charge of an incident particle, together with the measured energy determine the particle's charge state. We find that a rich variety of phenomena are operative in the transthermal energy regime (10 keV/Q to 100 keV/Q) covered by ULECA. Specifically, we present observations of locally accelerated protons, alpha particles, and heavier ions in the magnetosheath and upstream of the Earth's bow shock. Preliminary analysis indicates that the behavior of these locally accelerated particles is most similar at the same energy per charge.  相似文献   
133.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
134.
Geiss  J.  Bühler  F.  Cerutti  H.  Eberhardt  P.  Filleux  Ch.  Meister  J.  Signer  P. 《Space Science Reviews》2004,110(3-4):307-335
Space Science Reviews - The Apollo Solar Wind Composition (SWC) experiment was designed to measure elemental and isotopic abundances of the light noble gases in the solar wind, and to investigate...  相似文献   
135.
Haines  K.  Hipkin  R.  Beggan  C.  Bingley  R.  Hernandez  F.  Holt  J.  Baker  T.  Bingham  R.J. 《Space Science Reviews》2003,108(1-2):205-216
Accurate local geoids derived from in situ gravity data will be valuable in the validation of GOCE results. In addition it will be a challenge to use GOCE data in an optimal way, in combination with in situ gravity, to produce better local geoid solutions. This paper discusses the derivation of a new geoid over the NW European shelf, and its comparison with both tide gauge and altimetric sea level data, and with data from ocean models. It is hoped that over the next few years local geoid methods such as these can be extended to cover larger areas and to incorporate both in situ and satellite measured gravity data. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
136.
Israel  G.  Cabane  M.  Brun  J-F.  Niemann  H.  Way  S.  Riedler  W.  Steller  M.  Raulin  F.  Coscia  D. 《Space Science Reviews》2002,104(1-4):433-468
ACP's main objective is the chemical analysis of the aerosols in Titan's atmosphere. For this purpose, it will sample the aerosols during descent and prepare the collected matter (by evaporation, pyrolysis and gas products transfer) for analysis by the Huygens Gas Chromatograph Mass Spectrometer (GCMS). A sampling system is required for sampling the aerosols in the 135'32 km and 22'17 km altitude regions of Titan's atmosphere. A pump unit is used to force the gas flow through a filter. In its sampling position, the filter front face extends a few mm beyond the inlet tube. The oven is a pyrolysis furnace where a heating element can heat the filter and hence the sampled aerosols to 250 °C or 600 °C. The oven contains the filter, which has a thimble-like shape (height 28 mm). For transferring effluent gas and pyrolysis products to GCMS, the carrier gas is a labeled nitrogen 15N2, to avoid unwanted secondary reactions with Titan's atmospheric nitrogen. Aeraulic tests under cold temperature conditions were conducted by using a cold gas test system developed by ONERA. The objective of the test was to demonstrate the functional ability of the instrument during the descent of the probe and to understand its thermal behavior, that is to test the performance of all its components, pump unit and mechanisms. In order to validate ACP's scientific performance, pyrolysis tests were conducted at LISA on solid phase material synthesized from experimental simulation. The chromatogram obtained by GCMS analysis shows many organic compounds. Some GC peaks appear clearly from the total mass spectra, with specific ions well identified thanks to the very high sensitivity of the mass spectrometer. The program selected for calibrating the flight model is directly linked to the GCMS calibration plan. In order not to pollute the two flight models with products of solid samples such as tholins, we excluded any direct pyrolysis tests through the ACP oven during the first phase of the calibration. Post probe descent simulation of flight results are planned, using the much representative GCMS and ACP spare models. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
137.
We find the forms of the orbits in a self-consistent galactic model generated by a N-body simulation of the collapse of a protogalaxy. The model represents a stationary elliptical galaxy of type E5, which is approximately axisymmetric around its longest axis. The orbits are of three main types, box orbits (including box-like orbits), tube orbits and chaotic orbits. The box or box-like and tube orbits are represented by closed invariant curves on a Poincaré surface of section. The forms of the orbits and of the invariant curves can be explained by a third integral of motion I, that is given by the Giorgilli (1979) computer program. The nonresonant form of the third integral explains the box orbits, while a resonant form of this integral explains both the box orbits and the 1:1 tube orbits. The N-body model gives the distribution of velocities F, which is an exponential of the third integral.  相似文献   
138.
Spectral-domain covariance estimation with a priori knowledge   总被引:2,自引:0,他引:2  
A knowledge-aided spectral-domain approach to estimating the interference covariance matrix used in space-time adaptive processing (STAP) is proposed. Prior knowledge of the range-Doppler clutter scene is used to identify geographic regions with homogeneous scattering statistics. Then, minimum-variance spectral estimation is used to arrive at a spectral-domain clutter estimate. Finally, space-time steering vectors are used to transform the spectral-domain estimate into a data-domain estimate of the clutter covariance matrix. The proposed technique is compared with ideal performance and to the fast maximum likelihood technique using simulated results. An investigation of the performance degradation that can occur due to various inaccurate knowledge assumptions is also presented  相似文献   
139.
The Deep Impact mission will provide the highest resolution images yet of a comet nucleus. Our knowledge of the makeup and structure of cometary nuclei, and the processes shaping their surfaces, is extremely limited, thus use of the Deep Impact data to show the geological context of the cratering experiment is crucial. This article briefly discusses some of the geological issues of cometary nuclei.  相似文献   
140.
Klumpar  D.M.  Möbius  E.  Kistler  L.M.  Popecki  M.  Hertzberg  E.  Crocker  K.  Granoff  M.  Tang  Li  Carlson  C.W.  McFadden  J.  Klecker  B.  Eberl  F.  Künneth  E.  Kästle  H.  Ertl  M.  Peterson  W.K.  Shelly  E.G.  Hovestadt  D. 《Space Science Reviews》2001,98(1-2):197-219
The Time-of-flight Energy Angle Mass Spectrograph (TEAMS) is being flown on the FAST Small Explorer mission to measure the 3-dimensional distribution function of the major ion species present in the lower magnetosphere. The instrument is similar to time-of-flight plasma analyzer systems that have been designed and planned for flight as CODIF (COmposition and DIstribution Function analyzer) on the four European Space Agency Cluster-II spacecraft and, as ESIC (Equator-S Ion Composition instrument) on Equator-S. This instrument allows the 3-dimensional distribution functions of individual ion species to be determined within spin period (2.5 s). Two-dimensional distributions are measured in 80 ms. These capabilities are crucial for the study of selective energization processes in the auroral regions of the magnetosphere. The design, operational characteristics, and test and calibration results for this instrument are presented. The sensor consists of a toroidal top-hat electrostatic analyzer with instantaneous acceptance of ions over 360° in polar angle. After post-acceleration of the incoming ions by up to 25 kV, a time-of-flight mass spectrograph discriminates the individual species. It has been demonstrated through calibration that the instrument can easily separate H+, He2+, He+, O+ and, for energies after post-acceleration of > 20 keV, even O2 + molecules. On-board mass discrimination and the internal accumulation of several distinct data quantities combined with the spacecraft's flexible telemetry formatting allow for instrument data rates from 7.8 kb s–1 to 315 kb s–1 to be telemetered to ground through the FAST centralized Instrument Data Processor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号