首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   0篇
航空   38篇
航天技术   6篇
航天   8篇
  2021年   1篇
  2018年   7篇
  2017年   10篇
  2015年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   5篇
  2009年   5篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  1999年   1篇
  1996年   1篇
  1991年   1篇
  1984年   1篇
  1981年   1篇
排序方式: 共有52条查询结果,搜索用时 93 毫秒
11.
Meliga P  Hecht H  Young LR  Mast FW 《Acta Astronautica》2005,56(9-12):859-866
Short-radius centrifugation is a potential countermeasure against the effects of prolonged weightlessness. Head movements in a rotating environment, however, induce serious side effects: inappropriate vestibular ocular reflexes (VOR), body-tilt illusions and motion sickness induced by cross-coupled accelerations on a rotating platform. These are well predicted by a semicircular canal model. The present study investigates cognitive effects on the inappropriate VOR and the illusory sensations experienced by subjects rotating on a short-radius centrifuge (SRC). Subjects (N=19) were placed supine on a rotating horizontal bed with their head at the center of rotation. To investigate the extent to which they could control their sensations voluntarily, subjects were asked alternatively to "fight" (i.e. to try to resist and suppress) those sensations, or to "go" with (i.e. try to enhance or, at least, acquiesce in) them. The only significant effect on the VOR of this cognitive intervention was to diminish the time constant characterizing the decay of the nystagmus in subjects who had performed the "go" (rather than the "fight") trials. However, illusory sensations, as measured by reported subjective intensities, were significantly less intense during the "fight" than during the "go" trials. These measurements also verified an asymmetry in illusory sensation known from earlier experiments: the illusory sensations are greater when the head is rotated from right ear down (RED) to nose up (NU) posture than from NU to RED. The subjects habituated, modestly, to the rotation between their first and second sequences of trials, but showed no better (or worse) suppression of illusory sensations thereafter. No significant difference in habituation was observed between the "fight" and "go" trials.  相似文献   
12.
The SEIS (Seismic Experiment for Interior Structures) instrument on board the InSight mission to Mars is the critical instrument for determining the interior structure of Mars, the current level of tectonic activity and the meteorite flux. Meeting the performance requirements of the SEIS instrument is vital to successfully achieve these mission objectives. The InSight noise model is a key tool for the InSight mission and SEIS instrument requirement setup. It will also be used for future operation planning. This paper presents the analyses made to build a model of the Martian seismic noise as measured by the SEIS seismometer, around the seismic bandwidth of the instrument (from 0.01 Hz to 1 Hz). It includes the instrument self-noise, but also the environment parameters that impact the measurements. We present the general approach for the model determination, the environment assumptions, and we analyze the major and minor contributors to the noise model.  相似文献   
13.
Most of architectures used for the control loop of launch vehicles are based on attitude angle, attitude rate and lateral acceleration feedbacks. Related controllers are usually chosen to be stable. The main purpose of this paper is to give a comparison between a few architectures, pointing out the benefits of an unstable attitude angle feedback design for the control of an aerodynamically unstable launch vehicle. Such a design indeed is appropriate to reduce significantly the aerodynamic load during atmospheric flight. This is an issue of practical interest as it has become a design driver for mechanical sizing of modern launchers.The paper recalls the various goals the control loop is trying to reach all along the atmospheric flight (stability, set point tracking, aerodynamic load minimization …). For each phase of the flight, priorities are discussed. The paper then focuses on two critical phases of the atmospheric flight, i.e. high dynamic pressure period and atmospheric stages separation.  相似文献   
14.
Our understanding of the upper atmosphere of unmagnetized bodies such as Mars, Venus and Titan has improved significantly in this decade. Recent observations by in situ and remote sensing instruments on board Mars Express, Venus Express and Cassini have revealed characteristics of the neutral upper atmospheres (exospheres) and of energetic neutral atoms (ENAs). The ENA environment in the vicinity of the bodies is by itself a significant study field, but ENAs are also used as a diagnostic tool for the exosphere and the interaction with the upstream plasmas. Synergy between theoretical and modeling work has also improved considerably. In this review, we summarize the recent progress of our understanding of the neutral environment in the vicinity of unmagnetized planets.  相似文献   
15.
16.
在netUniversité这一平台上,结合IMS LD标准建立学习单元模型,并以此标准根据新的教学需求对已有模型进行改进.将HBDI 全脑模型结合入学习内容管理工具,利用设计时工具Reload Editor和运行时工具CopperCore Player构造学习单元模型.  相似文献   
17.
A model is developed to study the energetic particle populations in Ganymede’s magnetosphere. The main objective is to estimate to what extent the moon could protect an orbiter from radiations. Using Liouville’s theorem, the phase space density of particles coming from Jupiter’s magnetosphere is calculated at any point of Ganymede’s environment. Up to energies of ∼50–100 keV for ions and ∼10–20 MeV for electrons, Ganymede’s magnetic field appears to be able to form distinctive populations as loss-cones over the polar caps and radiation belts. At larger energies, these features are blurred by Larmor radius effects; the moon absorption simply creates a quasi-isotropic layer of ∼500 km thickness where the flux is reduced by ∼40–50%. The predictions are compared to Galileo measurements. In particular, we demonstrate the importance of the moon sweeping in reducing the flux over the polar caps. Interestingly, this can be accounted for by assuming that the particles bouncing between Jupiter and Ganymede are ideally scattered in pitch angle and permanently re-fill the loss-cone, which increases the precipitation on Ganymede’s polar cap. In overall, it is estimated that the radiation dose received by an orbiter of Ganymede will be reduced by more than 50–60% compared to the expected dose at Jupiter/Ganymede distance. This should have a positive impact on the design of a future orbiter of Ganymede.  相似文献   
18.
The performance prediction of helicopter in hover is of key importance for manufacturers because hover is a design configuration for the definition of a rotorcraft. A lot of effort has been made for more than 10 years all over the world in order to develop and validate numerical methods based on CFD. An Euler method (WAVES) developed by ONERA and coupled with a boundary layer code (MI3DI) is presented, validated and applied to compute the total performance of rotors with different tip shapes. A new boundary condition for the Euler code has been tested and enables better calculation by eliminating ‘numerical' recirculation. The code has demonstrated its ability to rank two rotors with different planforms in good agreement with experiment. Under industrial requirements new grid strategies have been studied and should allow to reduce CPU time consumption. It is shown that WAVES/MI3DI can be efficiently used in the aerodynamic design process of a new rotor.  相似文献   
19.
In support of the InSight mission in which two instruments (the SEIS seismometer and the \(\mbox{HP}^{3}\) heat flow probe) will interact directly with the regolith on the surface of Mars, a series of mechanical tests were conducted on three different regolith simulants to better understand the observations of the physical and mechanical parameters that will be derived from InSight. The mechanical data obtained were also compared to data on terrestrial sands. The density of the regolith strongly influences its mechanical properties, as determined from the data on terrestrial sands. The elastoplastic compression volume changes were investigated through oedometer tests that also provided estimates of possible changes in density with depth. The results of direct shear tests provided values of friction angles that were compared with that of a terrestrial sand, and an extrapolation to lower density provided a friction angle compatible with that estimated from previous observations on the surface of Mars. The importance of the contracting/dilating shear volume changes of sands on the dynamic penetration of the mole was determined, with penetration facilitated by the \(\sim1.3~\mbox{Mg/m}^{3}\) density estimated at the landing site. Seismic velocities, measured by means of piezoelectric bender elements in triaxial specimens submitted to various isotropic confining stresses, show the importance of the confining stress, with lesser influence of density changes under compression. A power law relation of velocity as a function of confining stress with an exponent of 0.3 was identified from the tests, allowing an estimate of the surface seismic velocity of 150 m/s. The effect on the seismic velocity of a 10% proportion of rock in the regolith was also studied. These data will be compared with in situ data measured by InSight after landing.  相似文献   
20.
The Jovian Auroral Distributions Experiment (JADE) on Juno provides the critical in situ measurements of electrons and ions needed to understand the plasma energy particles and processes that fill the Jovian magnetosphere and ultimately produce its strong aurora. JADE is an instrument suite that includes three essentially identical electron sensors (JADE-Es), a single ion sensor (JADE-I), and a highly capable Electronics Box (EBox) that resides in the Juno Radiation Vault and provides all necessary control, low and high voltages, and computing support for the four sensors. The three JADE-Es are arrayed 120° apart around the Juno spacecraft to measure complete electron distributions from ~0.1 to 100 keV and provide detailed electron pitch-angle distributions at a 1 s cadence, independent of spacecraft spin phase. JADE-I measures ions from ~5 eV to ~50 keV over an instantaneous field of view of 270°×90° in 4 s and makes observations over all directions in space each 30 s rotation of the Juno spacecraft. JADE-I also provides ion composition measurements from 1 to 50 amu with mm~2.5, which is sufficient to separate the heavy and light ions, as well as O+ vs S+, in the Jovian magnetosphere. All four sensors were extensively tested and calibrated in specialized facilities, ensuring excellent on-orbit observations at Jupiter. This paper documents the JADE design, construction, calibration, and planned science operations, data processing, and data products. Finally, the Appendix describes the Southwest Research Institute [SwRI] electron calibration facility, which was developed and used for all JADE-E calibrations. Collectively, JADE provides remarkably broad and detailed measurements of the Jovian auroral region and magnetospheric plasmas, which will surely revolutionize our understanding of these important and complex regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号