首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   79篇
  免费   0篇
  国内免费   1篇
航空   46篇
航天技术   26篇
航天   8篇
  2019年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2005年   3篇
  2004年   5篇
  2003年   2篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1994年   6篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   6篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1975年   1篇
  1972年   2篇
  1969年   1篇
  1967年   1篇
  1962年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
61.
Peformance of dynamic programming techniques forTrack-Before-Detect   总被引:1,自引:0,他引:1  
“Track-Before-Detect” (TBD) is a target tracking technique where no threshold is applied at each measurement frame. Instead, data are processed over a number of frames before decisions on target existence are made. The track is returned simultaneously with the detection. A simple algorithm is presented and demonstrated via simulations. A detailed analysis enables detection and tracking performance to be predicted for particular algorithm parameters. Good performance is observed at low signal-to-noise ratio (SNR), with rapid degradation as SNR is reduced further. For some cases the detection performance does not improve regardless of how many frames of data are processed. Tracking performance may also be poor even though detection performance is good  相似文献   
62.
A fully automatic tracking algorithm must be able to deal with an unknown number of targets, unknown target initiation and termination times, false measurements and possibly time-varying target trajectory behaviour. An efficient algorithm for tracking in this environment is presented here. This approach makes use of estimates of the probability of target existence, which is an integral part of the algorithm. This allows for the efficient generation and management of possible target hypotheses, yielding an algorithm with performance that matches what can be obtained by multiple hypothesis tracking-based approaches, but at a significantly lower computational cost. This paper considers only the single target case for clarity. The extension to multiple targets is easily incorporated into this framework. Simulation studies are given that show the effectiveness of this approach in the presence of heavy and nonuniform clutter when tracking a target in an environment of low probability of detection and in an environment where the target performs violent manoeuvres.  相似文献   
63.
Boynton  W.V.  Feldman  W.C.  Mitrofanov  I.G.  Evans  L.G.  Reedy  R.C.  Squyres  S.W.  Starr  R.  Trombka  J.I.  d'Uston  C.  Arnold  J.R.  Englert  P.A.J.  Metzger  A.E.  Wänke  H.  Brückner  J.  Drake  D.M.  Shinohara  C.  Fellows  C.  Hamara  D.K.  Harshman  K.  Kerry  K.  Turner  C.  Ward  M.  Barthe  H.  Fuller  K.R.  Storms  S.A.  Thornton  G.W.  Longmire  J.L.  Litvak  M.L.  Ton'chev  A.K. 《Space Science Reviews》2004,110(1-2):37-83
The Mars Odyssey Gamma-Ray Spectrometer is a suite of three different instruments, a gamma subsystem (GS), a neutron spectrometer, and a high-energy neutron detector, working together to collect data that will permit the mapping of elemental concentrations on the surface of Mars. The instruments are complimentary in that the neutron instruments have greater sensitivity to low amounts of hydrogen, but their signals saturate as the hydrogen content gets high. The hydrogen signal in the GS, on the other hand, does not saturate at high hydrogen contents and is sensitive to small differences in hydrogen content even when hydrogen is very abundant. The hydrogen signal in the neutron instruments and the GS have a different dependence on depth, and thus by combining both data sets we can infer not only the amount of hydrogen, but constrain its distribution with depth. In addition to hydrogen, the GS determines the abundances of several other elements. The instruments, the basis of the technique, and the data processing requirements are described as are some expected applications of the data to scientific problems.  相似文献   
64.
The Thermal Emission Imaging System (THEMIS) on 2001 Mars Odyssey will investigate the surface mineralogy and physical properties of Mars using multi-spectral thermal-infrared images in nine wavelengths centered from 6.8 to 14.9 μm, and visible/near-infrared images in five bands centered from 0.42 to 0.86 μm. THEMIS will map the entire planet in both day and night multi-spectral infrared images at 100-m per pixel resolution, 60% of the planet in one-band visible images at 18-m per pixel, and several percent of the planet in 5-band visible color. Most geologic materials, including carbonates, silicates, sulfates, phosphates, and hydroxides have strong fundamental vibrational absorption bands in the thermal-infrared spectral region that provide diagnostic information on mineral composition. The ability to identify a wide range of minerals allows key aqueous minerals, such as carbonates and hydrothermal silica, to be placed into their proper geologic context. The specific objectives of this investigation are to: (1) determine the mineralogy and petrology of localized deposits associated with hydrothermal or sub-aqueous environments, and to identify future landing sites likely to represent these environments; (2) search for thermal anomalies associated with active sub-surface hydrothermal systems; (3) study small-scale geologic processes and landing site characteristics using morphologic and thermophysical properties; and (4) investigate polar cap processes at all seasons. THEMIS follows the Mars Global Surveyor Thermal Emission Spectrometer (TES) and Mars Orbiter Camera (MOC) experiments, providing substantially higher spatial resolution IR multi-spectral images to complement TES hyperspectral (143-band) global mapping, and regional visible imaging at scales intermediate between the Viking and MOC cameras. The THEMIS uses an uncooled microbolometer detector array for the IR focal plane. The optics consists of all-reflective, three-mirror anastigmat telescope with a 12-cm effective aperture and a speed of f/1.6. The IR and visible cameras share the optics and housing, but have independent power and data interfaces to the spacecraft. The IR focal plane has 320 cross-track pixels and 240 down-track pixels covered by 10 ~1-μm-bandwidth strip filters in nine different wavelengths. The visible camera has a 1024×1024 pixel array with 5 filters. The instrument weighs 11.2 kg, is 29 cm by 37 cm by 55 cm in size, and consumes an orbital average power of 14 W.  相似文献   
65.
New nonlinear controllers for torque, speed, and shaft position of inverter fed induction machines are developed. The controllers are novel because they are based on the full DQ model of the machine and hence account for the nonlinear characteristics of induction machines. In addition, a multivariable control algorithm based on the DQ model is considered. Simulation results for the single input controllers are presented.  相似文献   
66.
A Gamma-Ray and Neutron Spectrometer (GRNS) instrument has been developed as part of the science payload for NASA’s Discovery Program mission to the planet Mercury. Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) launched successfully in 2004 and will journey more than six years before entering Mercury orbit to begin a one-year investigation. The GRNS instrument forms part of the geochemistry investigation and will yield maps of the elemental composition of the planet surface. Major elements include H, O, Na, Mg, Si, Ca, Ti, Fe, K, and Th. The Gamma-Ray Spectrometer (GRS) portion detects gamma-ray emissions in the 0.1- to 10-MeV energy range and achieves an energy resolution of 3.5 keV full-width at half-maximum for 60Co (1332 keV). It is the first interplanetary use of a mechanically cooled Ge detector. Special construction techniques provide the necessary thermal isolation to maintain the sensor’s encapsulated detector at cryogenic temperatures (90 K) despite the intense thermal environment. Given the mission constraints, the GRS sensor is necessarily body-mounted to the spacecraft, but the outer housing is equipped with an anticoincidence shield to reduce the background from charged particles. The Neutron Spectrometer (NS) sensor consists of a sandwich of three scintillation detectors working in concert to measure the flux of ejected neutrons in three energy ranges from thermal to ∼7 MeV. The NS is particularly sensitive to H content and will help resolve the composition of Mercury’s polar deposits. This paper provides an overview of the Gamma-Ray and Neutron Spectrometer and describes its science and measurement objectives, the design and operation of the instrument, the ground calibration effort, and a look at some early in-flight data.  相似文献   
67.
The scientific objectives of neutron mapping of the Moon are presented as 3 investigation tasks of NASA's Lunar Reconnaissance Orbiter mission. Two tasks focus on mapping hydrogen content over the entire Moon and on testing the presence of water-ice deposits at the bottom of permanently shadowed craters at the lunar poles. The third task corresponds to the determination of neutron contribution to the total radiation dose at an altitude of 50 km above the Moon. We show that the Lunar Exploration Neutron Detector (LEND) will be capable of carrying out all 3 investigations. The design concept of LEND is presented together with results of numerical simulations of the instrument's sensitivity for hydrogen detection. The sensitivity of LEND is shown to be characterized by a hydrogen detection limit of about 100 ppm for a polar reference area with a radius of 5 km. If the presence of ice deposits in polar "cold traps" is confirmed, a unique record of many millions of years of lunar history would be obtained, by which the history of lunar impacts could be discerned from the layers of water ice and dust. Future applications of a LEND-type instrument for Mars orbital observations are also discussed.  相似文献   
68.
Many parameters influence the evolution of the near-Earth debris population, including launch, solar, explosion and mitigation activities, as well as other future uncertainties such as advances in space technology or changes in social and economic drivers that effect the utilisation of space activities. These factors lead to uncertainty in the long-term debris population. This uncertainty makes it difficult to identify potential remediation strategies, involving active debris removal (ADR), that will perform effectively in all possible future cases. Strategies that cannot perform effectively, because of this uncertainty, risk either not achieving their intended purpose, or becoming a hindrance to the efforts of spacecraft manufactures and operators to address the challenges posed by space debris.  相似文献   
69.
A fundamental goal of cometary studies is to determine the exact relationship between these bodies and the Solar System – the question(s) can be summarised as follows: did comets originate during the same events that spawned the Sun and planets, are they more primitive bodies that record a pre-solar history, or are they interstellar materials collected in relatively more recent times? Now, whatever the origin of comets, it is entirely possible that they could, in part, contain interstellar or pre-solar components – indeed, it seems rather likely in light of the fact that primitive meteorites contain such entities. These particular components are likely to be refractory (dust, macromolecular organic complexes, etc.). Of more relevance to the issues above are the volatile constituents, which make up the bulk of a comet's mass. Since these materials, by their very nature, volatilise during perihelion passage of a comet they can, in some instances, be detected and measured spectroscopically. Perhaps the most useful species for isotopic investigations are C2, HCN and CN. Unfortunately, spectroscopic measurements can only currently be made with accuracies of ±10 to ±20%. As such it is very often not practical to conclude anything further than the fact that isotopic measurements are compatible with ‘`solar’' values, which tends to imply an origin from the margins of the solar accretion disk. But there is another problem with the spectroscopic measurements – since these are made on gaseous species in the coma (and relatively minor species at that) it is impossible to be certain that these represent the true nuclear values. In other words, if the processes of sublimation, active jetting, and photochemistry in the coma impart isotopic fractionation, the spectroscopic measurements could give a false impression of the true isotope ratios. What is required is an experiment capable of measuring isotopic ratios at the very surface of a comet. Herein we describe the Ptolemy instrument, which is included on the Philae lander as part of the Rosetta mission to 67P/Churyumov-Gerasimenko. The major objective of Ptolemy is a detailed appraisal of the nature and isotopic compositions of all materials present at the surface of a comet.  相似文献   
70.
The performance of several new clutter-reduction filters suitable for rectangular-pulse radar systems is investigated. The new filters consist of various approximations and modifications of two filters known to be optimal for certain criteria: the well-known Urkowitz filter which optiizes the clutter improvement ratio, and the newer sidelobe reduction filter which minimizes output noise power subject to peak sidelobe constaints. The new filters are compared usig five basic criteria: clutter improvement ratio, signal-to-noise ratio, sidelobe peak ratio, pulse compression ratio, and filter complexity. The results are summarized in tabular and graphical form.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号