首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
航空   18篇
航天技术   11篇
航天   3篇
  2021年   2篇
  2018年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   1篇
  2004年   1篇
  2000年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1988年   1篇
  1985年   1篇
  1978年   1篇
  1967年   1篇
排序方式: 共有32条查询结果,搜索用时 546 毫秒
11.
Traditionally in multi-spacecraft missions (e.g. formation flying, rendezvous) the GNSS-based relative positioning and attitude determination problem are treated as independent. In this contribution we will investigate the possibility to use multi-antenna data from each spacecraft, not only for attitude determination, but also to improve the relative positioning between spacecraft. Both for ambiguity resolution and accuracy of the baseline solution, we will show the theoretical improvement achievable as a function of the number of antennas on each platform. We concentrate on ambiguity resolution as the key to precise relative positioning and attitude determination and will show the theoretical limit of this kind of approach. We will use mission parameters of the European Proba-3 satellites in a software-based algorithm verification and a hardware-in-the-loop simulation. The software simulations indicated that this approach can improve single epoch ambiguity resolution up to 50% for relative positioning applying the typical antenna configurations for attitude determination. The hardware-in-the-loop simulations show that for the same antenna configurations, the accuracy of the relative positioning solution can improve up to 40%.  相似文献   
12.
General relativity (GR) can be probed by several tests in the weak gravitational field limit. On the contrary, very poor information exists about GR tests in strong gravitational fields. Here, we focus on the interaction of light rays with the strong gravitational field of a massive black hole and show that relativistic images may form. Hence, we calculate the shapes of shadows (mirages) forming just near BH horizons and discuss the possibility to estimate the black hole parameters (mass, spin and charge) by future astrometric missions. In 2007, the Radioastron space telescope will be launched and it will allow to evaluate those parameters for the black hole hosted at the center of our Galaxy.  相似文献   
13.
14.
Metallic ions coming from the ablation of extraterrestrial dust, play a significant role in the distribution of ions in the Earth’s ionosphere. Ions of magnesium and iron, and to a lesser extent, sodium, aluminium, calcium and nickel, are a permanent feature of the lower E-region. The presence of interplanetary dust at long distances from the Sun has been confirmed by the measurements obtained by several spacecrafts. As on Earth, the flux of interplanetary meteoroids can affect the ionospheric structure of other planets. The electron density of many planets show multiple narrow layers below the main ionospheric peak which are similar, in magnitude, to the upper ones. These layers could be due to long-lived metallic ions supplied by interplanetary dust and/or their satellites. In the case of Mars, the presence of a non-permanent ionospheric layer at altitudes ranging from 65 to 110 km has been confirmed and the ion Mg+?CO2 identified. Here we present a review of the present status of observed low ionospheric layers in Venus, Mars, Jupiter, Saturn and Neptune together with meteoroid based models to explain the observations. Meteoroids could also affect the ionospheric structure of Titan, the largest Saturnian moon, and produce an ionospheric layer at around 700 km that could be investigated by Cassini.  相似文献   
15.
GNSS-based precise relative positioning between spacecraft normally requires dual frequency observations, whereas attitude determination of the spacecraft, mainly due to the stronger model given by the a priori knowledge of the length and geometry of the baselines, can be performed precisely using only single frequency observations. When the Galileo signals will come available, the number of observations at the L1 frequency will increase as we will have a GPS and Galileo multi-constellation. Moreover the L1 observations of the Galileo system and modernized GPS are more precise than legacy GPS and this, combined with the increased number of observations, will result in a stronger model for single frequency relative positioning. In this contribution we will develop an even stronger model by combining the attitude determination problem with relative positioning. The attitude determination problem will be solved by the recently developed Multivariate Constrained (MC-) LAMBDA method. We will do this for each spacecraft and use the outcome for an ambiguity constrained solution on the baseline between the spacecraft. In this way the solution for the unconstrained baseline is bootstrapped from the MC-LAMBDA solutions of each spacecraft in what is called: multivariate bootstrapped relative positioning. The developed approach will be compared in simulations with relative positioning using a single antenna at each spacecraft (standard LAMBDA) and a vectorial bootstrapping approach. In the simulations we will analyze single epoch, single frequency success rates as the most challenging application. The difference in performance for the approaches for single epoch solutions, is a good indication of the strength of the underlying models. As the multivariate bootstrapping approach has a stronger model by applying information on the geometry of the constrained baselines, for applications with large observation noise and limited number of observations this will result in a better performance compared to the vectorial bootstrapping approach. Compared with standard LAMBDA, it can reach a 59% higher success rate for ambiguity resolution. The higher success rate on the unconstrained baseline between the platforms comes without extra computational load as the constrained baseline(s) problem has to be solved for attitude determination and this information can be applied for relative positioning.  相似文献   
16.
SESAME is an instrument complex built in international co-operation and carried by the Rosetta lander Philae intended to land on comet 67P/Churyumov-Gerasimenko in 2014. The main goals of this instrument suite are to measure mechanical and electrical properties of the cometary surface and the shallow subsurface as well as of the particles emitted from the cometary surface. Most of the sensors are mounted within the six soles of the landing gear feet in order to provide good contact with or proximity to the cometary surface. The measuring principles, instrument designs, technical layout, operational concepts and the results from the first in-flight measurements are described. We conclude with comments on the consequences of the last minute change of the target comet and how to improve and to preserve the knowledge during the long-duration Rosetta mission.  相似文献   
17.
ROLIS (Rosetta Lander Imaging System) is one of the two imaging systems carried by Rosetta’s Lander Philae, successfully launched to comet 67P/ Churyumov-Gerasimenko in March 2004. Consisting of a highly-miniaturized CCD camera, ROLIS will operate as a descent imager, acquiring imagery of the landing site with increasing spatial resolution. After touchdown ROLIS will focus at an object distance of 30 cm, taking pictures of the comet’s surface below the Lander. Multispectral imaging is achieved through an illumination device consisting of four arrays of monochromatic light emitting diodes working in the 470, 530, 640 and 870 nm spectral bands. The drill sample sites, as well as the Alpha X-Ray Spectrometer (APXS) target locations will be imaged to provide context for the measurements performed by the in situ analyzers. After the drilling operation, the borehole will be inspected to study its morphology and to search for stratification. Taking advantage of the Lander’s rotation capability, stereo image pairs will be acquired, which will facilitate the mapping and identification of surface structures.  相似文献   
18.
The dynamics of shock propagation have been studied theoretically for a variety of two-dimensional lattices. The approach used is based on molecular dynamics and hinges on the exact numerical solution by computer of the equations of motion for the individual atoms or molecules in each lattice. Shocks have been launched into the lattices under study by methods designed to simulate flyer-plate impact. Two different interatomic potentials have been used, one endothermic and one net-exothermic. For both types of potential, a shock launched at one side of the lattice will spall a group of atoms off the other side. However, the subsequent behavior of the two types of lattice is very different. For endothermic potentials, after the initial atomic spall, the residual lattice is quiescent with little further activity. For net-exothermic potentials, the initial atomic spall injects additional energy into the system in such a manner that subsequently further spall occurs at both sides. Once this new spall is initiated, it leads rapidly to further bond breaking and explosive disintegration of the system.  相似文献   
19.
It is argued that the instrument landing system (ILS) is now at its operational limit in terms of radio frequency availability, approach flexibility, and technology. The operational requirements for a microwave landing system (MLS), which will overcome key limitations of the ILS and provide growth to meet future requirements of precision landing systems, are discussed, John F. Kennedy (JFK) International Airport and LaGuardia Airport in New York City are discussed as examples to demonstrate the capabilities of MLS  相似文献   
20.
A convolution technique is proposed that allows direct reconstruction of the processed synthetic-aperture radar (SAR) image from the digitally-sampled, block-encoded raw data. This computational compression technique reduces the number of arithmetic operations from that required by fast Fourier transform (FFT) convolution for SAR processing. SAR phase histories are block encoded and directly processed into an image where only arithmetic additions are required for the processing. For SAR data previously block encoded, the processing time is reduced by a factor of 100 or more. A speed-up of three times over SAR processing by FET convolution has been demonstrated when both computation of the block encoding and subsequent direct processing are included in the time. SAR image quality measurements for a method of block encoding called vector quantization at compression ration ranging from 5:1 to 50:1 show image degradation proportional to the compression ratio. For a 5:1 compression radio, image quality measurements show minimal degradation  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号