首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   346篇
  免费   1篇
  国内免费   5篇
航空   150篇
航天技术   64篇
综合类   1篇
航天   137篇
  2021年   6篇
  2020年   4篇
  2019年   5篇
  2018年   11篇
  2017年   6篇
  2015年   2篇
  2014年   7篇
  2013年   9篇
  2012年   23篇
  2011年   36篇
  2010年   17篇
  2009年   23篇
  2008年   18篇
  2007年   22篇
  2006年   16篇
  2005年   25篇
  2004年   3篇
  2003年   14篇
  2002年   12篇
  2001年   4篇
  2000年   5篇
  1998年   6篇
  1997年   7篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   6篇
  1984年   4篇
  1983年   7篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   4篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   6篇
  1966年   2篇
排序方式: 共有352条查询结果,搜索用时 859 毫秒
31.
In this paper, prognostic tools are developed to detect the onset of electrical failures in an aircraft power generator, and to predict the generator's remaining useful life (RUL). Focus is on the rotor circuit since failure mode, effects, and criticality analysis (FMECA) studies indicate that it is a high priority candidate for condition monitoring. A signature feature is developed and tested by seeded fault experiments to verify that the initial stages of rotor faults are observable under diverse generator load conditions. A tracking filter is used to assess the damage state and predict generator RUL. This information helps to avoid unexpected failures while reducing the overall life-cycle cost of the system.  相似文献   
32.
33.
34.
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition.  相似文献   
35.
Howardite-eucrite-diogenite (HED) meteorites, thought to be derived from 4 Vesta, provide the best sampling available for any differentiated asteroid. However, deviations in oxygen isotopic composition from a common mass-fractionation line suggest that a few eucrite-like meteorites are from other bodies, or that Vesta was not completely homogenized during differentiation. The petrology and geochemistry of HEDs provide insights into igneous processes that produced a crust composed of basalts, gabbros, and ultramafic cumulate rocks. Although most HED magmas were fractionated, it is unresolved whether some eucrites may have been primary melts. The geochemistry of HEDs indicates that bulk Vesta is depleted in volatile elements and is relatively reduced, but has chondritic refractory element abundances. The compositions of HEDs may favor a magma ocean model, but inconsistencies remain. Geochronology indicates that Vesta accreted and differentiated within the first several million years of solar system history, that magmatism continued over a span of ??10 Myr, and that its thermal history extended for perhaps 100 Myr. The protracted cooling history is probably responsible for thermal metamorphism of most HEDs. Impact chronology indicates that Vesta experienced many significant collisions, including during the late heavy bombardment. The age of the huge south pole crater is controversial, but it probably ejected Vestoids and many HEDs. Continued impacts produced a regolith composed of eucrite and diogenite fragments containing only minor exotic materials. HED meteorites serve as ground truth for orbital spectroscopic and chemical analyses by the Dawn spacecraft, and their properties are critical for instrument calibration and interpretation of Vesta??s geologic history.  相似文献   
36.
Inflatable/deployable structures are under consideration as habitats for future Lunar surface science operations. The use of non-traditional structural materials combined with the need to maintain a safe working environment for extended periods in a harsh environment has led to the consideration of an integrated structural health management system for future habitats, to ensure their integrity. This article describes recent efforts to develop prototype sensing technologies and new self-healing materials that address the unique requirements of habitats comprised mainly of soft goods. A new approach to detecting impact damage is discussed, using addressable flexible capacitive sensing elements and thin film electronics in a matrixed array. Also, the use of passive wireless sensor tags for distributed sensing is discussed, wherein the need for on-board power through batteries or hardwired interconnects is eliminated. Finally, the development of a novel, microencapuslated self-healing elastomer with applications for inflatable/deployable habitats is reviewed.  相似文献   
37.
David Livingston   《Space Policy》2003,19(2):279-94
The aim to increase commercial economic activity in space will be facilitated by the introduction of a code of ethics for the businesses involved, something that is now commonplace on Earth. A proposed such code—comprising 12 principles—is presented below. It covers areas such as environmental stewardship of space, the promotion of honest dealings, making safety an important concern, ensuring a free-market economy and disclosure of conflicts of interest or political contributions.  相似文献   
38.
Market-based systems are those systems in which currency is used to express demand for a limited resource. In these systems, users `own' currency and exchange it for a desired commodity. Though used for thousands of years, market-based applications to space missions are still in their infancy. The first successful application was in 1992 with the Cassini Mission to Saturn. In this case, the sum total of mass and dollars for the science instruments had to fit within the allocated resource envelope. Results from the use of a market-based system show that the entire science payload grew from original estimates by only +1% for cost, and by –7% for mass. The next application was for Space Shuttle Secondary Payloads. In this application, available shuttle lift mass, number of lockers for secondary payloads, and available astronaut time had to be allocated between 5 NASA Users. Experiments showed that a market-based system can reduce the size of the required workforce needed to produce a manifest of the same quality as one produced `by committee.' Finally, a market-based system was experimentally applied to LightSAR science planning, a proposed joint NASA/Commercial RADAR mission. In this application, users were able to produce a conflict-free timeline of events remotely, of high science value, in about half the time required by more traditional methods.  相似文献   
39.
The NASA Radiation Belt Storm Probes (RBSP) mission, currently in Phase B, is a two-spacecraft, Earth-orbiting mission, which will launch in 2012. The spacecraft's S-band radio frequency (RF) telecommunications subsystem has three primary functions: provide spacecraft command capability, provide spacecraft telemetry and science data return, and provide accurate Doppler data for navigation. The primary communications link to the ground is via the Johns Hopkins University Applied Physics Laboratory's (JHU/APL) 18 m dish, with secondary links to the NASA 13 m Ground Network and the Tracking and Data Relay Spacecraft System (TDRSS) in single-access mode. The on-board RF subsystem features the APL-built coherent transceiver and in-house builds of a solid-state power amplifier and conical bifilar helix broad-beam antennas. The coherent transceiver provides coherency digitally, and controls the downlink data rate and encoding within its field-programmable gate array (FPGA). The transceiver also provides a critical command decoder (CCD) function, which is used to protect against box-level upsets in the C&DH subsystem. Because RBSP is a spin-stabilized mission, the antennas must be symmetric about the spin axis. Two broad-beam antennas point along both ends of the spin axis, providing communication coverage from boresight to 70°. An RF splitter excites both antennas; therefore, the mission is designed such that no communications are required close to 90° from the spin axis due to the interferometer effect from the two antennas. To maximize the total downlink volume from the spacecraft, the CCSDS File Delivery Protocol (CFDP) has been baselined for the RBSP mission. During real-time ground contacts with the APL ground station, downlinked files are checked for errors. Handshaking between flight and ground CFDP software results in requests to retransmit only the file fragments lost due to dropouts. This allows minimization of RF link margins, thereby maximizing data rate and thus data volume.  相似文献   
40.
"头痛医头,脚痛医脚"是无法从根源上消灭恐怖主义的,美国机场安检人员也只好寄希望于更加"聪明"的爆炸物探测系统,以此防范灾难的发生.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号