首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   0篇
  国内免费   2篇
航空   27篇
航天技术   28篇
综合类   1篇
航天   14篇
  2021年   8篇
  2019年   7篇
  2018年   4篇
  2017年   4篇
  2014年   5篇
  2013年   4篇
  2012年   6篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2008年   2篇
  2006年   1篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1996年   2篇
  1995年   2篇
  1986年   1篇
  1976年   1篇
排序方式: 共有70条查询结果,搜索用时 296 毫秒
11.
Previous studies have identified solar 27-day signatures in several parameters in the Mesosphere/Lower thermosphere region, including temperature and Noctilucent cloud (NLC) occurrence frequency. In this study we report on a solar 27-day signature in NLC altitude with peak-to-peak variations of about 400?m. We use SCIAMACHY limb-scatter observations from 2002 to 2012 to detect NLCs. The superposed epoch analysis method is applied to extract solar 27-day signatures. A 27-day signature in NLC altitude can be identified in both hemispheres in the SCIAMACHY dataset, but the signature is more pronounced in the northern hemisphere. The solar signature in NLC altitude is found to be in phase with solar activity and temperature for latitudes ?70°N. We provide a qualitative explanation for the positive correlation between solar activity and NLC altitude based on published model simulations.  相似文献   
12.
13.
D. J. McComas  E. R. Christian  N. A. Schwadron  N. Fox  J. Westlake  F. Allegrini  D. N. Baker  D. Biesecker  M. Bzowski  G. Clark  C. M. S. Cohen  I. Cohen  M. A. Dayeh  R. Decker  G. A. de Nolfo  M. I. Desai  R. W. Ebert  H. A. Elliott  H. Fahr  P. C. Frisch  H. O. Funsten  S. A. Fuselier  A. Galli  A. B. Galvin  J. Giacalone  M. Gkioulidou  F. Guo  M. Horanyi  P. Isenberg  P. Janzen  L. M. Kistler  K. Korreck  M. A. Kubiak  H. Kucharek  B. A. Larsen  R. A. Leske  N. Lugaz  J. Luhmann  W. Matthaeus  D. Mitchell  E. Moebius  K. Ogasawara  D. B. Reisenfeld  J. D. Richardson  C. T. Russell  J. M. Sokół  H. E. Spence  R. Skoug  Z. Sternovsky  P. Swaczyna  J. R. Szalay  M. Tokumaru  M. E. Wiedenbeck  P. Wurz  G. P. Zank  E. J. Zirnstein 《Space Science Reviews》2018,214(8):116
The Interstellar Mapping and Acceleration Probe (IMAP) is a revolutionary mission that simultaneously investigates two of the most important overarching issues in Heliophysics today: the acceleration of energetic particles and interaction of the solar wind with the local interstellar medium. While seemingly disparate, these are intimately coupled because particles accelerated in the inner heliosphere play critical roles in the outer heliospheric interaction. Selected by NASA in 2018, IMAP is planned to launch in 2024. The IMAP spacecraft is a simple sun-pointed spinner in orbit about the Sun-Earth L1 point. IMAP’s ten instruments provide a complete and synergistic set of observations to simultaneously dissect the particle injection and acceleration processes at 1 AU while remotely probing the global heliospheric interaction and its response to particle populations generated by these processes. In situ at 1 AU, IMAP provides detailed observations of solar wind electrons and ions; suprathermal, pickup, and energetic ions; and the interplanetary magnetic field. For the outer heliosphere interaction, IMAP provides advanced global observations of the remote plasma and energetic ions over a broad energy range via energetic neutral atom imaging, and precise observations of interstellar neutral atoms penetrating the heliosphere. Complementary observations of interstellar dust and the ultraviolet glow of interstellar neutrals further deepen the physical understanding from IMAP. IMAP also continuously broadcasts vital real-time space weather observations. Finally, IMAP engages the broader Heliophysics community through a variety of innovative opportunities. This paper summarizes the IMAP mission at the start of Phase A development.  相似文献   
14.
15.
In the restricted three-body problem if the Jacobi constant is just below the value corresponding to Lagrangian point only a little neck exists around the equilibrium point and capture trajectories are indicated as low-energy. Capture properties depend on the dynamics around these critical points and qualitative results can be obtained using linearized systems. In this paper, to study transit trajectory properties in the restricted three and four-body problem, the Earth–Moon–Sun–Satellite system is considered as example and studied using different models. In the circular restricted three-body problem (Earth–Moon–Satellite), transit, non transit and asymptotic trajectories, are easily identified by using the principal reference frame. Dynamics around Lagrangian point are then studied introducing the Moon eccentricity into the elliptical restricted three-body model. A preferential region for transit orbit is individuated and studied as a function of eigenvalue properties. To introduce the Sun effect, the bi-circular four-body model is considered and dynamics around Lagrangian points studied as a function of angular distance between Earth–Sun and Earth–Moon line. Finally, results obtained in the elliptical three-body model and bi-circular four-body model, are compared with numerical simulations using real Sun–Moon–Earth ephemeris.  相似文献   
16.
An experimental investigation on the wake vortex formation and evolution of a four vortex system of a generic model in the near field and extended near field as well as the behaviour and decay in the far field region has been conducted by means of hot-wire anemometry in a wind tunnel. The results were obtained during an experimental campaign as part of the EC project “FAR-Wake”. The model used consists of a wing–tail plane configuration with the wing producing positive lift and the tail plane negative lift. The circulation ratio of tail plane to wing is ?0.3 and the span ratio is 0.3. Thus, a four vortex system with counter-rotating neighboured vortices exists. The model set-up was chosen on the condition to create a most promising four vortex system with respect to accelerate wake vortex decay by optimal perturbations enhancing inherent instability mechanisms. The flow field has been investigated for a half plane of the entire wake up to a distance of 48 span dimensions downstream of the model. The results obtained at 1, 12, 24 and 48 span distances are shown as non-dimensional axial vorticity and vertical turbulence intensities. A significant decay in peak vorticity, swirl velocity and circulation is observable during the downward motion of the vortices. Spectral analysis of the unsteady velocity data reveals a peak in the power spectral density distributions indicating the presence of a dominating instability. Using two hot-wire probes cross spectral density distributions have also been evaluated, which highlight the co-operative instability leading to a rapid wake vortex decay within 30 span dimensions downstream.  相似文献   
17.
Solar-photon sails can be useful for missions towards and about asteroids. Indeed, for the interplanetary transfer phase, missions to asteroids often require a large variation in inclination and solar-photon sails perform very well for such high energy missions. In the same way, solar-photon sails are also expected to perform well in the phase about the asteroid. This paper studies single and binary asteroids’ hovering regions by using a sailcraft. In order to consider a sailcraft with its own mass and shape, the mutual polyhedral method (usually used to study asteroid dynamics) is used; therefore, the sailcraft is designed by means of tetrahedra. The procedure to obtain the hovering regions about a single asteroid is presented and an accurate analysis of the control variables is carried out. Moreover, control torques required to maintain hovering orbits are obtained by considering the gravitational torques acting on the sailcraft due to the asteroid. In the end, the theory for hovering orbits is extended to binary-asteroid systems and applied to the binary system 1999 KW4.  相似文献   
18.
In the context of the ESA Climate Change Initiative project, a new coastal sea level altimetry product has been developed in order to support advances in coastal sea level variability studies. Measurements from Jason-1,2&3 missions have been retracked with the Adaptive Leading Edge Subwaveform (ALES) Retracker and then ingested in the X-TRACK software with the best possible set of altimetry corrections. These two coastal altimetry processing approaches, previously successfully validated and applied to coastal sea level research, are combined here for the first time in order to derive a 16-year-long (June 2002 to May 2018), high-resolution (20-Hz), along-track sea level dataset in six regions: Northeast Atlantic, Mediterranean Sea, West Africa, North Indian Ocean, Southeast Asia and Australia. The study demonstrates that this new coastal sea level product called X-TRACK/ALES is able to extend the spatial coverage of sea level altimetry data ~3.5 km in the land direction, when compared to the X-TRACK 1-Hz dataset. We also observe a large improvement in coastal sea level data availability from Jason-1 to Jason-3, with data at 3.6 km, 1.9 km and 0.9 km to the coast on average, for Jason-1, Jason-2 and Jason-3, respectively. When combining measurements from Jason-1 to Jason-3, we reach a distance of 1.2–4 km to the coast. When compared to tide gauge data, the accuracy of the new altimetry near-shore sea level estimations also improves. In terms of correlations with a large set of independent tide gauge observations selected in the six regions, we obtain an average value of 0.77. We also show that it is now possible to derive from the X-TRACK/ALES product an estimation of the ocean current variability up to 5 km to the coast. This new altimetry dataset, freely available, will provide a valuable contribution of altimetry in coastal marine research community.  相似文献   
19.
In this work, equilibrium attitude configurations, attitude stability and periodic attitude families are investigated for rigid spacecrafts moving on stationary orbits around asteroid 216 Kleopatra. The polyhedral approach is adopted to formulate the equations of rotational motion. In this dynamical model, six equilibrium attitude configurations with non-zero Euler angles are identified for a spacecraft moving on each stationary orbit. Then the linearized equations of attitude motion at equilibrium attitudes are derived. Based on the linear system, the necessary conditions of stability of equilibrium attitudes are provided, and stability domains on the spacecraft’s characteristic plane are obtained. It is found that the stability domains are distributed in the first and third quadrants of the characteristic plane and the stability domain in the third quadrant is separated into two regions by an unstable belt. Subsequently, we present the linear solution around a stable equilibrium attitude point, indicating that there are three types of elemental periodic attitudes. By means of numerical approaches, three fundamental families of periodic solutions are determined in the full attitude model.  相似文献   
20.
The aim of this paper is to quantify the performance of a flat solar sail to perform a double angular momentum reversal maneuver and produce a new class of two-dimensional, non-Keplerian orbits in the ecliptic plane. For a given pair of orbital parameters, the orbital period and the perihelion distance, it is possible to find the minimum solar sail characteristic acceleration required to fulfil a double angular momentum reversal trajectory. This problem is addressed using an optimal formulation and is solved through an indirect approach. The new trajectories are symmetrical with respect to the sun-perihelion line and exhibit a bean-like shape. Two main difficulties must be properly taken into account. On one side the sail is required to perform a rapid reorientation maneuver when it approaches the perihelion. Suitable simulations have shown that such a maneuver is feasible. In the second place the new trajectories require the use of high performance solar sails. For example, assuming an orbital period equal to 5 years, the required solar sail characteristic acceleration is greater than 3.4 mm/s2. Such a value, although beyond the currently available sail performance, is comparable to what is required by the original concept of H-reversal maneuvers introduced by Vulpetti in 1996.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号