首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   0篇
航空   87篇
航天技术   27篇
航天   49篇
  2021年   3篇
  2019年   2篇
  2018年   11篇
  2017年   7篇
  2015年   2篇
  2014年   3篇
  2013年   8篇
  2012年   7篇
  2011年   12篇
  2010年   3篇
  2009年   7篇
  2008年   8篇
  2007年   8篇
  2006年   5篇
  2005年   12篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1989年   1篇
  1987年   5篇
  1986年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1971年   1篇
  1969年   1篇
  1968年   5篇
  1967年   6篇
  1966年   7篇
排序方式: 共有163条查询结果,搜索用时 390 毫秒
11.
Two versions of a microwave feedback radiometer have been built and tested. One used an electromechanical feedback system; the other, an all-electronic system. The response of the servo loops proved to be fast enough and linear enough for almost any radiometer application. The rms noise fluctuation was the same as that of a Dicke radiometer. Stability was excellent even under adverse environmental conditions.  相似文献   
12.
William E. Halal   《Space Policy》2007,23(4):234-240
Space technology and activities have changed markedly from the early days of the space era and are continuing to develop rapidly. The TechCast Project—set up to pool the knowledge of experts in the scientific fields—includes space in its predictions. Here its president reports on its space forecasts for the 21st century. The importance of the shift towards the privatization of space is noted and the near-to-medium-term impossibility of interstellar travel conceded. Contact with ETI is deemed much more likely, however.  相似文献   
13.
The nature of physical phenomena is such that scattering from portions of an object, a number of objects, or clutter, is not completely unrelated; the underlying environment causes some degree of order in the phenomenon. Radar partial coherence theory describes a structure for the general target, or clutter, and its relationship to radar cross section, waveform coding, and the radar output signal. The clutter ambiguity function is introduced for extended bodies and embraces the (Woodward) ambiguity function for a point target. Due to nonlinear effects caused by partial coherence within the general target, radar signals and targets are formulated in terms of mutual coherence functions. The basic quantities describing the radar output are 1) the radar mutual coherence function (formulated in terms of the radar waveform) and 2) the target mutual coherence function which depends upon target properties, physical environment, and viewing aspect. Random noise (independent point scatterers) and partially coherent portions of reflecting bodies are made accountable in the theory. Partial coherence effects are treated as patches of reflected energy: self-coherent energy patches plus mutually coherent energy among the patches.  相似文献   
14.
Increased sensitivity and dynamic range of the instrumental techniques used in conjunction with experiments on ballistic ranges have brought to the fore many problems arising from contamination in the ranges themselves. This is seldom discussed when experimental results are presented but is frequently the controlling limitation on the accuracy of the measurements. The authors discuss contamination due to dirt and debris resultant from gun operation, gaseous impurities, and projectile-borne impurities as they have occurred at the Re-entry Simulating Range of Lincoln Laboratory. The effects of these contaminants on measurements are discussed and illustrated, and measures for controlling them are outlined. Finally, a particular range operation is described from the standpoint of impurity control.  相似文献   
15.
Previous studies have shown that extended length Earth-oriented tethers in the geosynchronous (GEO) region can be used to re-orbit satellites to disposal orbits. One such approach involves the extension of a GEO based tether, collection of a debris object, and retraction of the tether, which transfers the retracted configuration to a higher energy orbit for debris disposal. The re-extension of the tether after debris disposal returns the configuration to the near-GEO altitude. The practical feasibility of such a system depends on the ability to collect GEO debris objects, attach them to a deployed tether system, and retract the tethers for transfer to the disposal orbits.This study addresses the collection and delivery of debris objects to the deployed tether system in GEO. The investigation considers the number, type and the characteristics of the debris objects as well as the collection tug that can be ground controlled to detect, rendezvous and dock with the debris objects for their delivery to the tethers system.A total of more than 400 objects are in drift orbits crossing all longitudes either below or above the geostationary radius. More than 130 objects are also known to librate around the stable points in GEO with periods of libration up to five or more years. A characterization of the position and velocity of the debris objects relative to the collection tug is investigated. Typical rendezvous performance requirements for uncooperative GEO satellites are examined, and the similarities with other approaches such as the ESA's CX-OLEV commercial mission proposal to extend the life of geostationary telecommunication satellites are noted.  相似文献   
16.
The synthesis of radar ambiguity functions is approached using burst-pulse time-frequency waveform coding. Noting that the parameters that define the central response of the ambiguity function for these code classes also define the waveform code, a statistical decision procedure based upon the central response is employed to obtain Bayes-type codes. The selection of the code parameters is subject to restrictions imposed by the noncentral response of the ambiguity function. Three classes of random time-frequency codes are treated: 1) uniform amplitude, uniform pulsewidth matched codes; 2) uniform amplitude, nonuniform pulsewidth matched codes; and 3) uniform amplitude, uniform pulsewidth with receiver amplitude mismatch.  相似文献   
17.
Mercury’s regolith, derived from the crustal bedrock, has been altered by a set of space weathering processes. Before we can interpret crustal composition, it is necessary to understand the nature of these surface alterations. The processes that space weather the surface are the same as those that form Mercury’s exosphere (micrometeoroid flux and solar wind interactions) and are moderated by the local space environment and the presence of a global magnetic field. To comprehend how space weathering acts on Mercury’s regolith, an understanding is needed of how contributing processes act as an interactive system. As no direct information (e.g., from returned samples) is available about how the system of space weathering affects Mercury’s regolith, we use as a basis for comparison the current understanding of these same processes on lunar and asteroidal regoliths as well as laboratory simulations. These comparisons suggest that Mercury’s regolith is overturned more frequently (though the characteristic surface time for a grain is unknown even relative to the lunar case), more than an order of magnitude more melt and vapor per unit time and unit area is produced by impact processes than on the Moon (creating a higher glass content via grain coatings and agglutinates), the degree of surface irradiation is comparable to or greater than that on the Moon, and photon irradiation is up to an order of magnitude greater (creating amorphous grain rims, chemically reducing the upper layers of grains to produce nanometer-scale particles of metallic iron, and depleting surface grains in volatile elements and alkali metals). The processes that chemically reduce the surface and produce nanometer-scale particles on Mercury are suggested to be more effective than similar processes on the Moon. Estimated abundances of nanometer-scale particles can account for Mercury’s dark surface relative to that of the Moon without requiring macroscopic grains of opaque minerals. The presence of nanometer-scale particles may also account for Mercury’s relatively featureless visible–near-infrared reflectance spectra. Characteristics of material returned from asteroid 25143 Itokawa demonstrate that this nanometer-scale material need not be pure iron, raising the possibility that the nanometer-scale material on Mercury may have a composition different from iron metal [such as (Fe,Mg)S]. The expected depletion of volatiles and particularly alkali metals from solar-wind interaction processes are inconsistent with the detection of sodium, potassium, and sulfur within the regolith. One plausible explanation invokes a larger fine fraction (grain size <45 μm) and more radiation-damaged grains than in the lunar surface material to create a regolith that is a more efficient reservoir for these volatiles. By this view the volatile elements detected are present not only within the grain structures, but also as adsorbates within the regolith and deposits on the surfaces of the regolith grains. The comparisons with findings from the Moon and asteroids provide a basis for predicting how compositional modifications induced by space weathering have affected Mercury’s surface composition.  相似文献   
18.
Flowgraph techniques are extended to systems with piecewise-linear characteristics by developing criteria for construction of an optimum model from related subregions in which linearity holds. This requires the synthesis of several known techniques and results in a wide range of useful applications including: 1) devices with nonlinear characteristics which may be considered as linear over certain subregions; 2) networks whose response to changes in applied signal frequency or magnitude may be approximated by piecewise-linear asymptotes; 3) systems processing two or more signals simultaneously with different transfer or immitance characteristics for each signal; 4) circuits approximated by different equivalent circuits depending on the numerical values of critical parameters. Representative examples will illustrate these and similar applications. Procedures are presented to provide a logical, orderly, and effective approach to construct a model, to determine figures of merit, and to optimize the model for a prescribed region of operation or for a desired range of parameters.  相似文献   
19.
The general theory of side-looking synthetic aperture radar systems is developed. A simple circuit-theory model is developed; the geometry of the system determines the nature of the prefilter and the receiver (or processor) is the postfilter. The complex distributed reflectivity density appears as the input, and receiver noise is first considered as the interference which limits performance. Analysis and optimization are carried out for three performance criteria (resolution, signal-to-noise ratio, and least squares estimation of the target field). The optimum synthetic aperture length is derived in terms of the noise level and average transmitted power. Range-Doppler ambiguity limitations and optical processing are discussed briefly. The synthetic aperture concept for rotating target fields is described. It is observed that, for a physical aperture, a side-looking radar, and a rotating target field, the azimuth resolution is ?/? where ? is the change in aspect angle over which the target field is viewed, The effects of phase errors on azimuth resolution are derived in terms of the power density spectrum of the derivative of the phase errors and the performance in the absence of phase errors.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号